# Majorization Minimization (MM) and Block Coordinate Descent (BCD)

Wing-Kin (Ken) Ma

Department of Electronic Engineering, The Chinese University Hong Kong, Hong Kong

#### ELEG5481, Lecture 15

Acknowledgment: Qiang Li for helping prepare the slides.

# Outline

- Majorization Minimization (MM)
  - Convergence
  - Applications
- Block Coordinate Descent (BCD)
  - Applications
  - Convergence
- Summary

## **Majorization Minimization**

Consider the following problem

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) \quad \text{s.t. } \boldsymbol{x} \in \mathcal{X}$$
 (1)

where  $\mathcal{X}$  is a closed convex set;  $f(\cdot)$  may be non-convex and/or nonsmooth.

- **Challenge**: For a general  $f(\cdot)$ , problem (1) can be difficult to solve.
- Majorization Minimization: Iteratively generate  $\{x^r\}$  as follows

$$\boldsymbol{x}^r \in \min_{\boldsymbol{x}} u(\boldsymbol{x}, \boldsymbol{x}^{r-1}) \quad \text{s.t. } \boldsymbol{x} \in \mathcal{X}$$
 (2)

where  $u(\boldsymbol{x}, \boldsymbol{x}^{r-1})$  is a surrogate function of  $f(\boldsymbol{x})$ , satisfying

1. 
$$u(x, x^r) \ge f(x), \quad \forall x^r, x \in \mathcal{X};$$
  
2.  $u(x^r, x^r) = f(x^r);$ 



Figure 1: An pictorial illustration of MM algorithm.

**Property 1.**  $\{f(x^r)\}$  is nonincreasing, i.e.,  $f(x^r) \le f(x^{r-1}), \forall r = 1, 2, ...$ 

*Proof.* 
$$f(\boldsymbol{x}^r) \le u(\boldsymbol{x}^r, \boldsymbol{x}^{r-1}) \le u(\boldsymbol{x}^{r-1}, \boldsymbol{x}^{r-1}) = f(\boldsymbol{x}^{r-1})$$

• The nonincreasing property of  $\{f(\boldsymbol{x}^r)\}$  implies that  $f(\boldsymbol{x}^r) \to \overline{f}$ . But how about the convergence of the iterates  $\{\boldsymbol{x}^r\}$ ?

### **Technical Preliminaries**

- Limit point:  $\bar{x}$  is a limit point of  $\{x_k\}$  if there exists a subsequence of  $\{x_k\}$  that converges to  $\bar{x}$ . Note that every bounded sequence in  $\mathbb{R}^n$  has a limit point (or convergent subsequence);
- Directional derivative: Let f : D → R be a function where D ⊆ R<sup>m</sup> is a convex set. The directional derivative of f at point x in direction d is defined by

$$f'(\boldsymbol{x}; \boldsymbol{d}) \triangleq \liminf_{\lambda \downarrow 0} rac{f(\boldsymbol{x} + \lambda \boldsymbol{d}) - f(\boldsymbol{x})}{\lambda}$$

- If f is differentiable, then  $f'(\boldsymbol{x}; \boldsymbol{d}) = \boldsymbol{d}^T \nabla f(\boldsymbol{x})$ .
- Stationary point:  $oldsymbol{x} \in \mathcal{X}$  is a stationary point of  $f(\cdot)$  if

$$f'(\boldsymbol{x}; \boldsymbol{d}) \ge 0, \ \forall \boldsymbol{d} \text{ such that } \boldsymbol{x} + \boldsymbol{d} \in \mathcal{D}.$$
 (3)

- A stationary point may be a local min., a local max. or a saddle point; - If  $\mathcal{D} = \mathbb{R}^n$  and f is differentiable, then (3)  $\iff \nabla f(\mathbf{x}) = \mathbf{0}$ .

## **Convergence of MM**

• Assumption 1  $u(\cdot, \cdot)$  satisfies the following conditions

$$\left( u(\boldsymbol{y}, \boldsymbol{y}) = f(\boldsymbol{y}), \quad \forall \boldsymbol{y} \in \mathcal{X}, \right)$$
(4a)

$$\int u(\boldsymbol{x}, \boldsymbol{y}) \ge f(\boldsymbol{x}), \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{X},$$
(4b)

$$\begin{cases} u'(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{d})|_{\boldsymbol{x}=\boldsymbol{y}} = f'(\boldsymbol{y}; \boldsymbol{d}), & \forall \boldsymbol{d} \text{ with } \boldsymbol{y} + \boldsymbol{d} \in \mathcal{X}, \\ u(\boldsymbol{x}, \boldsymbol{y}) \text{ is continuous in } (\boldsymbol{x}, \boldsymbol{y}), \end{cases}$$
(4c)

• (4c) means the 1st order local behavior of  $u(\cdot, \boldsymbol{x}^{r-1})$  is the same as  $f(\cdot)$ .

#### **Convergence of MM**

**Theorem 1.** [Razaviyayn-Hong-Luo] Assume that Assumption 1 is satisfied. Then every limit point of the iterates generated by MM algorithm is a stationary point of problem (1).

*Proof.* From **Property 1**, we know that  $f(x^{r+1}) \leq u(x^{r+1}, x^r) \leq u(x, x^r), \forall x \in \mathcal{X}$ . Now assume that there exists a subsequence  $\{x^{r_j}\}$  of  $\{x^r\}$  converging to a limit point z, i.e.,  $\lim_{j\to\infty} x^{r_j} = z$ . Then

$$u(x^{r_{j+1}}, x^{r_{j+1}}) = f(x^{r_{j+1}}) \le f(x^{r_j+1}) \le u(x^{r_j+1}, x^{r_j}) \le u(x, x^{r_j}), \ \forall x \in \mathcal{X}.$$

Letting  $j \to \infty$ , we obtain  $u({m z}, {m z}) \le u({m x}, {m z}), \quad \forall {m x} \in {\mathcal X}$ , which implies that

$$u'(\boldsymbol{x}, \boldsymbol{z}; \boldsymbol{d})|_{\boldsymbol{x}=\boldsymbol{z}} \ge 0, \quad \forall \boldsymbol{z} + \boldsymbol{d} \in \mathcal{X}.$$

Combining the above inequality with (4c) (i.e.,  $u'(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{d})|_{\boldsymbol{x}=\boldsymbol{y}} = f'(\boldsymbol{y}; \boldsymbol{d}), \quad \forall \boldsymbol{d} \text{ with } \boldsymbol{y} + \boldsymbol{d} \in \mathcal{X}$ ), we have

$$f'(\boldsymbol{z}; \boldsymbol{d}) \ge 0, \quad \forall \boldsymbol{z} + \boldsymbol{d} \in \mathcal{X}.$$

#### **Applications** — **Nonnegative Least Squares**

In many engineering applications, we encounter the following problem

$$(\mathsf{NLS}) \quad \min_{\boldsymbol{x} \ge \boldsymbol{0}} \|\mathbf{A}\boldsymbol{x} - \boldsymbol{b}\|_2^2 \tag{5}$$

where  $m{b} \in \mathbb{R}^m_+$ ,  $m{b} 
eq m{0}$ , and  $m{A} \in \mathbb{R}^{m imes n}_{++}$ .

- It's an LS problem with nonnegative constraints, so the conventional LS solution may not be feasible for (5).
- A simple multiplicative updating algorithm:

$$\boldsymbol{x}_l^r = c_l^r \boldsymbol{x}_l^{r-1}, \quad l = 1, \dots, n \tag{6}$$

where  $x_l^r$  is the *l*th component of  $x^r$ , and  $c_l^r = \frac{[\mathbf{A}^T \boldsymbol{b}]_l}{[\mathbf{A}^T \mathbf{A} \boldsymbol{x}^{r-1}]_l}$ .

• Starting with  $x^0 > 0$ , then all  $x^r$  generated by (6) are nonnegative.



Figure 2:  $\|\mathbf{A} \mathbf{x}^r - \mathbf{b}\|_2$  vs. the number of iterations.

• Usually the multiplicative update converges within a few tens of iterations.

• MM interpretation: Let  $f(x) \triangleq ||\mathbf{A}x - \mathbf{b}||_2^2$ . The multiplicative update essentially solves the following problem

$$\min_{\boldsymbol{x} \ge \boldsymbol{0}} u(\boldsymbol{x}, \boldsymbol{x}^{r-1})$$

where

$$u(\boldsymbol{x}, \boldsymbol{x}^{r-1}) \triangleq f(\boldsymbol{x}^{r-1}) + (\boldsymbol{x} - \boldsymbol{x}^{r-1})^T \nabla f(\boldsymbol{x}^{r-1}) + \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}^{r-1})^T \boldsymbol{\Phi}(\boldsymbol{x}^{r-1}) (\boldsymbol{x} - \boldsymbol{x}^{r-1}),$$
  
$$\boldsymbol{\Phi}(\boldsymbol{x}^{r-1}) = \text{Diag}\left(\frac{[\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x}^{r-1}]_1}{\boldsymbol{x}_1^{r-1}}, \dots, \frac{[\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x}^{r-1}]_n}{\boldsymbol{x}_n^{r-1}}\right).$$

- Observations:

$$\begin{cases} u(\boldsymbol{x}, \boldsymbol{x}^{r-1}) \text{ is quadratic approx. of } f(\boldsymbol{x}), \\ \Phi(\boldsymbol{x}^{r-1}) \succeq \mathbf{A}^T \mathbf{A}, \end{cases} \implies \begin{cases} u(\boldsymbol{x}, \boldsymbol{x}^{r-1}) \ge f(\boldsymbol{x}), \ \forall \boldsymbol{x} \in \mathbb{R}^n, \\ u(\boldsymbol{x}^{r-1}, \boldsymbol{x}^{r-1}) = f(\boldsymbol{x}^{r-1}). \end{cases}$$

• The multiplicative update converges to an optimal solution of NLS (by the MM convergence in **Theorem 1** and convexity of NLS).

#### **Applications — Convex-Concave Procedure/ DC Programming**

• Suppose that  $f(\boldsymbol{x})$  has the following form

$$f(\boldsymbol{x}) = g(\boldsymbol{x}) - h(\boldsymbol{x}),$$

where g(x) and h(x) are convex and differentiable. Thus, f(x) is in general nonconvex.

• DC Programming: Construct  $u(\cdot, \cdot)$  as

$$u(\boldsymbol{x}, \boldsymbol{x}^{r}) = g(\boldsymbol{x}) - \underbrace{\left(h(\boldsymbol{x}^{r}) + \nabla_{\boldsymbol{x}}h(\boldsymbol{x}^{r})^{T}(\boldsymbol{x} - \boldsymbol{x}^{r})\right)}_{\text{linearization of } h \text{ at } x^{r}}$$

• By the 1st order condition of  $h(\boldsymbol{x})$ , it's easy to show that

$$u(\boldsymbol{x}, \boldsymbol{x}^r) \ge f(\boldsymbol{x}), \ \forall \boldsymbol{x} \in \mathcal{X}, \qquad u(\boldsymbol{x}^r, \boldsymbol{x}^r) = f(\boldsymbol{x}^r).$$

• Sparse Signal Recovery by DC Programming

•

$$\min_{x} ||x||_0 \quad \text{s.t. } y = \mathbf{A}x \tag{7}$$
- Apart from the popular  $\ell_1$  approximation, consider the following concave approximation:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \sum_{i=1}^n \log(1 + |x_i|/\epsilon) \quad \text{s.t. } \boldsymbol{y} = \mathbf{A}\boldsymbol{x},$$



Figure 3:  $\log(1+|x|/\epsilon)$  promotes more sparsity than  $\ell_1$ 

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\sum_{i=1}^n\log(1+|x_i|/\epsilon)\quad\text{s.t.}\ \boldsymbol{y}=\mathbf{A}\boldsymbol{x},$$

which can be equivalently written as

$$\min_{\boldsymbol{x},\boldsymbol{z}\in\mathbb{R}^n}\sum_{i=1}^n\log(z_i+\epsilon)\quad\text{s.t.}\ \boldsymbol{y}=\mathbf{A}\boldsymbol{x},\ |x_i|\leq z_i,\ i=1,\ldots,n\tag{8}$$

- Problem (8) minimizes a concave objective, so it's a special case of DC programming (g(x) = 0). Linearizing the concave function at  $(x^r, z^r)$  yields

$$(\boldsymbol{x}^{r+1}, \boldsymbol{z}^{r+1}) = \arg\min\sum_{i=1}^{n} \frac{z_i}{z_i^r + \epsilon}$$
 s.t.  $\boldsymbol{y} = \mathbf{A}\boldsymbol{x}, \ |x_i| \le z_i, \ i = 1, \dots, n$ 

– We solve a sequence of reweighted  $\ell_1$  problems.



**Fig. 2** Sparse signal recovery through reweighted  $\ell_1$  iterations. (a) Original length n = 512 signal  $x_0$  with 130 spikes. (b) Scatter plot, coefficient-by-coefficient, of  $x_0$  versus its reconstruction  $x^{(0)}$  using unweighted  $\ell_1$  minimization. (c) Reconstruction  $x^{(1)}$  after the first reweighted iteration. (d) Reconstruction  $x^{(2)}$  after the second reweighted iteration

# Applications — $\ell_2 - \ell_p$ Optimization

• Many problems involve solving the following problem (e.g., basis-pursuit denoising)

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) \triangleq \frac{1}{2} \|\boldsymbol{y} - \mathbf{A}\boldsymbol{x}\|_{2}^{2} + \mu \|\boldsymbol{x}\|_{p}$$
(9)

where  $p \ge 1$ .

• If  $\mathbf{A} = \mathbf{I}$  or  $\mathbf{A}$  is unitary, optimal  $x^{\star}$  is computed in closed-form as

$$\boldsymbol{x}^{\star} = \mathbf{A}^T \boldsymbol{y} - \operatorname{Proj}_C(\mathbf{A}^T \boldsymbol{y})$$

where  $C \triangleq \{ \boldsymbol{x} : \|\boldsymbol{x}\|_{p*} \leq \mu \}$ ,  $\|\cdot\|_{p*}$  is the dual norm of  $\|\cdot\|_p$  and  $\operatorname{Proj}_C$  denotes the projection operator. In particular, for p = 1

$$x_i^\star = \operatorname{soft}(y_i, \mu), \quad i = 1, \dots, n$$

where  $soft(u, a) \triangleq sign(u) max\{|u|-a, 0\}$  denotes a *soft-thresholding* operation.

• For general A, there is no simple closed-form solution for (9).

• MM for  $\ell_2 - \ell_p$  Problem: Consider a modified  $\ell_2 - \ell_p$  problem

$$\min_{\boldsymbol{x}} u(\boldsymbol{x}, \boldsymbol{x}^r) \triangleq f(\boldsymbol{x}) + \operatorname{dist}(\boldsymbol{x}, \boldsymbol{x}^r)$$
(10)

where dist $(\boldsymbol{x}, \boldsymbol{x}^r) \triangleq \frac{c}{2} \|\boldsymbol{x} - \boldsymbol{x}^r\|_2^2 - \frac{1}{2} \|\mathbf{A}\boldsymbol{x} - \mathbf{A}\boldsymbol{x}^r\|_2^2$  and  $c > \lambda_{\max}(\mathbf{A}^T \mathbf{A})$ .

- dist $(\boldsymbol{x}, \boldsymbol{x}^r) \ge 0 \ \forall \boldsymbol{x} \Longrightarrow u(\boldsymbol{x}, \boldsymbol{x}^r)$  majorizes  $f(\boldsymbol{x})$ . -  $u(\boldsymbol{x}, \boldsymbol{x}^r)$  can be reexpressed as

$$u(\boldsymbol{x}, \boldsymbol{x}^r) = \frac{c}{2} \|\boldsymbol{x} - \bar{\boldsymbol{x}}^r\|_2^2 + \mu \|\boldsymbol{x}\|_p + \text{const.},$$

where

$$\bar{\boldsymbol{x}}^r = rac{1}{c} \mathbf{A}^T (\boldsymbol{y} - \mathbf{A} \boldsymbol{x}^r) + \boldsymbol{x}^r.$$

– The modified  $\ell_2 - \ell_p$  problem (10) has a simple soft-thresholding solution.

– Repeatedly solving problem (10) leads to an optimal solution of the  $\ell_2 - \ell_p$  problem (by the MM convergence in **Theorem 1**)

## **Applications** — **Expectation** Maximization (EM)

 $\bullet\,$  Consider an ML estimate of  $\theta,$  given the random observation w

$$\hat{\theta}_{\mathrm{ML}} = \arg\min_{\theta} - \ln p(w|\theta)$$

- Suppose that there are some missing data or hidden variables z in the model. Then, EM algorithm iteratively compute an ML estimate  $\hat{\theta}$  as follows:
  - E-step:

$$g(\theta, \theta^r) \triangleq \mathbb{E}_{z|w,\theta^r}\{\ln p(w, z|\theta)\}$$

– M-step:

$$\theta^{r+1} = \arg\max_{\theta} g(\theta, \theta^r)$$

- repeat the above two steps until convergence.
- EM algorithm generates a nonincreasing sequence of  $\{-\ln p(w|\theta^r)\}$ .
- EM algorithm can be interpreted by MM.

• MM interpretation of EM algorithm:

$$-\ln p(w|\theta)$$

$$= -\ln \mathbb{E}_{z|\theta} p(w|z,\theta)$$

$$= -\ln \mathbb{E}_{z|\theta} \left[ \frac{p(z|w,\theta^r)p(w|z,\theta)}{p(z|w,\theta^r)} \right]$$

$$= -\ln \mathbb{E}_{z|w,\theta^r} \left[ \frac{p(z|\theta)p(w|z,\theta)}{p(z|w,\theta^r)} \right] \text{ (interchange the integrations)}$$

$$\leq -\mathbb{E}_{z|w,\theta^r} \ln \left[ \frac{p(z|\theta)p(w|z,\theta)}{p(z|w,\theta^r)} \right] \text{ (Jensen's inequality)}$$

$$= -\mathbb{E}_{z|w,\theta^r} \ln p(w,z|\theta) + \mathbb{E}_{z|w,\theta^r} \ln p(z|w,\theta^r) \tag{11a}$$

- $u(\theta, \theta^r)$  majorizes  $-\ln p(w|\theta)$ , and  $-\ln p(w|\theta^r) = u(\theta^r, \theta^r)$ ;
- E-step essentially constructs  $u(\theta, \theta^r)$ ;
- M-step minimizes  $u(\theta, \theta^r)$  (note  $\theta$  appears in the 1st term of (11a) only).

# Outline

- Majorization Minimization (MM)
  - Convergence
  - Applications
- Block Coordinate Descent (BCD)
  - Applications
  - Convergence
- Summary

### **Block Coordinate Descent**

• Consider the following problem

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) \quad \text{s.t. } \boldsymbol{x} \in \mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times \ldots \times \mathcal{X}_m \subseteq \mathbb{R}^n$$
(12)

where each  $\mathcal{X}_i \subseteq \mathbb{R}^{n_i}$  is closed, nonempty and convex.

#### • BCD Algorithm:

- 1: Find a feasible point  $oldsymbol{x}^0 \in \mathcal{X}$  and set r=0
- 2: repeat

3: 
$$r = r + 1, i = (r - 1 \mod m) + 1$$

4: Let  $\boldsymbol{x}_i^{\star} \in \operatorname{arg\,min}_{\boldsymbol{x} \in \boldsymbol{\mathcal{X}}_i} f(\boldsymbol{x}_1^{r-1}, \dots, \boldsymbol{x}_{i-1}^{r-1}, \boldsymbol{x}, \boldsymbol{x}_{i+1}^{r-1}, \dots, \boldsymbol{x}_m^{r-1})$ 

5: Set 
$$oldsymbol{x}_i^r = oldsymbol{x}_i^\star$$
 and  $oldsymbol{x}_k^r = oldsymbol{x}_k^{r-1}, \; orall k 
eq i$ 

6: **until** some convergence criterion is met

#### • Merits of BCD

- 1. each subproblem is much easier to solve, or even has a closed-form solution;
- 2. The objective value is nonincreasing along the BCD updates;
- 3. it allows parallel or distributed implementations.

## Applications — $\ell_2 - \ell_1$ Optimization Problem

• Let us revisit the  $\ell_2-\ell_1$  problem

$$\min_{\boldsymbol{x}\in\mathbb{R}^n} f(\boldsymbol{x}) \triangleq \frac{1}{2} \|\boldsymbol{y} - \mathbf{A}\boldsymbol{x}\|_2^2 + \mu \|\boldsymbol{x}\|_1$$
(13)

- Apart from MM, BCD is another efficient approach to solve (13):
  - Optimize  $x_k$  while fixing  $x_j = x_j^r$ ,  $\forall j \neq k$ :

$$\min_{x_k} f_k(x_k) \triangleq \frac{1}{2} \| \underbrace{\boldsymbol{y} - \sum_{j \neq k} \boldsymbol{a}_j x_j^r}_{\triangleq \bar{\boldsymbol{y}}} - \underline{\boldsymbol{a}_k x_k} \|_2^2 + \mu |x_k|$$

- The optimal  $x_k$  has a closed form:

$$x_k^{\star} = \operatorname{soft} \left( \boldsymbol{a}_k^T \bar{\boldsymbol{y}} / \| \boldsymbol{a}_k \|^2, \mu / \| \boldsymbol{a}_k \|^2 \right)$$

- Cyclically update  $x_k$ ,  $k = 1, \ldots, n$  until convergence.

# Applications — Iterative Water-filling for MIMO MAC Sum Capacity Maximization

• MIMO Channel Capacity Maximization

- MIMO received signal model:

$$\boldsymbol{y}(t) = \mathbf{H}\boldsymbol{x}(t) + \boldsymbol{n}(t)$$

where

 $\begin{array}{ll} \boldsymbol{x}(t) \in \mathbb{C}^{N} & \mbox{ Tx signal} \\ \mathbf{H} \in \mathbb{C}^{N \times N} & \mbox{ MIMO channel matrix} \\ \boldsymbol{n}(t) \in \mathbb{C}^{N} & \mbox{ standard additive Gaussian noise, i.e., } \boldsymbol{n}(t) \sim \mathcal{CN}(\mathbf{0}, \mathbf{I}). \end{array}$ 



Figure 4: MIMO system model.

– MIMO channel capacity:

$$C(\mathbf{Q}) = \log \det \left( \mathbf{I} + \mathbf{H} \mathbf{Q} \mathbf{H}^H \right)$$

where  $\mathbf{Q} = \mathrm{E}\{\boldsymbol{x}(t)\boldsymbol{x}(t)^H\}$  is the covariance of the tx signal.

- MIMO channel capacity maximization:

$$\max_{\mathbf{Q} \succeq \mathbf{0}} \log \det \left( \mathbf{I} + \mathbf{H} \mathbf{Q} \mathbf{H}^H \right) \quad \text{s.t. } \operatorname{Tr}(\mathbf{Q}) \le P$$

where P > 0 is the transmit power budget.

– The optimal  $\mathbf{Q}^{\star}$  is given by the well-known *water-filling* solution, i.e.,

$$\mathbf{Q}^{\star} = \mathbf{V} \mathrm{Diag}(\boldsymbol{p}^{\star}) \mathbf{V}^{H}$$

where  $\mathbf{H} = \mathbf{U}\text{Diag}(\sigma_1, \dots, \sigma_N)\mathbf{V}^H$  is the SVD of  $\mathbf{H}$ , and  $\mathbf{p}^* = [p_1^*, \dots, p_N^*]$ is the power allocation with  $p_i^* = \max(0, \mu - 1/\sigma_i^2)$  and  $\mu \ge 0$  being the water-level such that  $\sum_i p_i^* = P$ .

- MIMO Multiple-Access Channel (MAC) Sum-Capacity Maximization
  - Multiple transmitters simultaneously communicate with one receiver:



Figure 5: MIMO multiple-access channel (MAC).

- Received signal model:

$$\boldsymbol{y}(t) = \sum_{k=1}^{K} \mathbf{H}_k \boldsymbol{x}_k(t) + \boldsymbol{n}(t)$$

- MAC sum capacity:

$$C_{\text{MAC}}(\{\mathbf{Q}_k\}_{k=1}^K) = \log \det \left(\sum_{k=1}^K \mathbf{H}_k \mathbf{Q}_k \mathbf{H}_k^H + \mathbf{I}\right)$$

- MAC sum capacity maximization:

$$\max_{\{\mathbf{Q}_k\}_{k=1}^K} \log \det \left( \sum_{k=1}^K \mathbf{H}_k \mathbf{Q}_k \mathbf{H}_k^H + \mathbf{I} \right)$$
s.t.  $\operatorname{Tr}(\mathbf{Q}_k) \le P_k, \ \mathbf{Q}_k \succeq \mathbf{0}, \ k = 1, \dots, K$ 
(14)

- Problem (14) is convex w.r.t.  $\{\mathbf{Q}_k\}$ , but it has no simple closed-form solution.
- Alternatively, we can apply BCD to (14) and cyclically update  $\mathbf{Q}_k$  while fixing  $\mathbf{Q}_j$  for  $j \neq k$

$$(\triangle) \max_{\mathbf{Q}_{k}} \log \det \left(\mathbf{H}_{k}\mathbf{Q}_{k}\mathbf{H}_{k}^{H} + \boldsymbol{\Phi}\right)$$
  
s.t.  $\operatorname{Tr}(\mathbf{Q}_{k}) \leq P_{k}, \quad \mathbf{Q}_{k} \succeq \mathbf{0},$ 

where  $\mathbf{\Phi} = \sum_{j 
eq k} \mathbf{H}_j \mathbf{Q}_j \mathbf{H}_j^H + \mathbf{I}$ 

–  $(\triangle)$  has a closed-form water-filling solution, just like the previous single-user MIMO case.

## **Applications** — Low-Rank Matrix Completion

- In a previous lecture, we have introduced the low-rank matrix completion problem, which has huge potential in sales recommendation.
- For example, we would like to predict how much someone is going to like a movie based on its movie preferences:

 $M = \begin{bmatrix} 2 & 3 & 1 & ? & ? & 5 & 5 \\ 1 & ? & 4 & 2 & ? & ? & ? \\ ? & 3 & 1 & ? & 2 & 2 & 2 \\ ? & ? & 3 & ? & 1 & 5 \\ 2 & ? & 4 & ? & ? & 5 & 3 \end{bmatrix}$  users

 $\bullet~M$  is assumed to be of low rank, as only a few factors affect users' preferences.

$$\min_{\mathbf{W}\in\mathbb{R}^{m\times n}} \operatorname{rank}(\mathbf{W}) \quad \text{s.t. } W_{ij} = M_{ij}, \ \forall (i,j) \in \mathbf{\Omega}$$

• An alternative low-rank matrix completion formulation [Wen-Yin-Zhang]:

$$(\triangle) \quad \min_{\mathbf{X},\mathbf{Y},\mathbf{Z}} \ \frac{1}{2} \|\mathbf{X}\mathbf{Y} - \mathbf{Z}\|_F^2 \quad \text{s.t.} \ Z_{ij} = M_{ij}, \ \forall (i,j) \in \mathbf{\Omega}$$

where  $\mathbf{X} \in \mathbb{R}^{M \times L}$ ,  $\mathbf{Y} \in \mathbb{R}^{L \times N}$ ,  $\mathbf{Z} \in \mathbb{R}^{M \times N}$ , and L is an estimate of min. rank.

• Advantage of adopting  $(\triangle)$ : When BCD is applied, each subproblem of  $(\triangle)$  has a closed-form solution:

$$\begin{split} \mathbf{X}^{r+1} &= \mathbf{Z}^{r} \mathbf{Y}^{rT} (\mathbf{Y}^{r} \mathbf{Y}^{rT})^{\dagger}, \\ \mathbf{Y}^{r+1} &= (\mathbf{X}^{r+1T} \mathbf{X}^{r+1})^{\dagger} (\mathbf{X}^{r+1T} \mathbf{Z}^{r}), \\ [\mathbf{Z}^{r+1}]_{i,j} &= \begin{cases} [\mathbf{X}^{r+1} \mathbf{Y}^{r+1}]_{i,j}, & \text{for } (i,j) \notin \mathbf{\Omega} \\ M_{i,j}, & \text{for } (i,j) \in \mathbf{\Omega} \end{cases} \end{split}$$

## **Applications** — Maximizing **A** Convex Quadratic Function

• Consider maximizing a convex quadratic problem:

$$(\Box) \quad \max_{\boldsymbol{x}} \ \frac{1}{2} \boldsymbol{x}^T \mathbf{Q} \boldsymbol{x} + \boldsymbol{c}^T \boldsymbol{x} \quad \text{s.t.} \ \boldsymbol{x} \in \mathcal{X}$$

where  ${\mathcal X}$  is a polyhedral set, and  $\mathbf{Q} \succeq \mathbf{0}.$ 

 $\bullet \ (\Box)$  is equivalent to the following  ${\rm problem}^1$ 

$$(\triangle) \quad \max_{\boldsymbol{x}_1, \boldsymbol{x}_2} \ \frac{1}{2} \boldsymbol{x}_1^T \mathbf{Q} \boldsymbol{x}_2 + \frac{1}{2} \boldsymbol{c}^T \boldsymbol{x}_1 + \frac{1}{2} \boldsymbol{c}^T \boldsymbol{x}_2 \quad \text{s.t.} \ (\boldsymbol{x}_1, \boldsymbol{x}_2) \in \mathcal{X} \times \mathcal{X}$$

• When fixing either  $x_1$  or  $x_2$ , problem  $(\triangle)$  is an LP, thereby efficiently solvable.

<sup>&</sup>lt;sup>1</sup>The equivalence is in the following sense: If  $\boldsymbol{x}^{\star}$  is an optimal solution of  $(\Box)$ , then  $(\boldsymbol{x}^{\star}, \boldsymbol{x}^{\star})$  is optimal for  $(\bigtriangleup)$ ; Conversely, if  $(\boldsymbol{x}_{1}^{\star}, \boldsymbol{x}_{2}^{\star})$  is an optimal solution of  $(\bigtriangleup)$ , then both  $\boldsymbol{x}_{1}^{\star}, \boldsymbol{x}_{2}^{\star}$  are optimal for  $(\Box)$ .

**Applications** — Nonnegative Matrix Factorization (NMF)

• NMF is concerned with the following problem [Lee-Seung]:

$$\min_{\mathbf{U}\in\mathbb{R}^{m\times k},\mathbf{V}\in\mathbb{R}^{k\times n}} \|\mathbf{M}-\mathbf{U}\mathbf{V}\|_{F}^{2} \qquad \text{s.t. } \mathbf{U}\geq\mathbf{0}, \ \mathbf{V}\geq\mathbf{0}$$
(15)

where  $\mathbf{M} \geq \mathbf{0}$ .

• Usually  $k \ll \min(m, n)$  or  $mk + nk \ll mn$ , so NMF can be seen as a linear dimensionality reduction technique for nonnegative data.



# **NMF Examples**

#### • Image Processing:

- $\mathbf{U}\geq\mathbf{0}$  constraints the basis elements to be nonnegative.
- $\mathbf{V} \geq \mathbf{0}$  imposes an additive reconstruction.



The basis elements extract facial features such as eyes, nose and lips.

• Text Mining



- Basis elements allow to recover different topics;
- Weights allow to assign each text to its corresponding topics.

• Hyperspectral Unmixing



- Basis elements U represent different materials;
- Weights  $\mathbf{V}$  allow to know which pixel contains which material.

• Let's turn back to the NMF problem:

$$\min_{\mathbf{U}\in\mathbb{R}^{m\times k},\mathbf{V}\in\mathbb{R}^{k\times n}} \|\mathbf{M}-\mathbf{U}\mathbf{V}\|_{F}^{2} \qquad \text{s.t. } \mathbf{U}\geq\mathbf{0}, \ \mathbf{V}\geq\mathbf{0}$$
(16)

- Without " $\geq 0$ " constraints, the optimal  $\mathbf{U}^{\star}$  and  $\mathbf{V}^{\star}$  can be obtained by SVD.
- With " $\geq$  0" constraints, problem (16) is generally NP-hard.
- When fixing U (resp. V), problem (16) is convex w.r.t. V (resp. U).
- For example, for a given U, the *i*th column of V is updated by solving the following NLS problem:

$$\min_{\mathbf{V}(:,i)\in\mathbb{R}^k} \|\mathbf{M}(:,i) - \mathbf{U}\mathbf{V}(:,i)\|_2^2, \quad \text{s.t. } \mathbf{V}(:,i) \ge \mathbf{0},$$
(17)

#### **BCD Algorithm for NMF**:

- 1: Initialize  $\mathbf{U} = \mathbf{U}^0$ ,  $\mathbf{V} = \mathbf{V}^0$  and r = 0;
- 2: repeat
- 3: solve the NLS problem

$$\mathbf{V}^{\star} \in \arg\min_{\mathbf{V}\in\mathbb{R}^{k\times n}} \|\mathbf{M} - \mathbf{U}^{r}\mathbf{V}\|_{F}^{2}, \quad \text{s.t. } \mathbf{V} \ge \mathbf{0}$$

4: 
$$\mathbf{V}^{r+1} = \mathbf{V}^{\star};$$

5: solve the NLS problem

$$\mathbf{U}^{\star} \in \arg\min_{\mathbf{U}\in\mathbb{R}^{m\times k}} \|\mathbf{M} - \mathbf{U}\mathbf{V}^{r+1}\|_{F}^{2}, \text{ s.t. } \mathbf{U} \ge \mathbf{0}$$

6: 
$$\mathbf{U}^{r+1} = \mathbf{U}^{\star};$$

- 7: r = r + 1;
- 8: **until** some convergence criterion is met

# Outline

- Majorization Minimization (MM)
  - Convergence
  - Applications
- Block Coordinate Descent (BCD)
  - Applications
  - Convergence
- Summary

### **BCD Convergence**

• The idea of BCD is to divide and conquer. However, there is no free lunch; BCD may get stuck or converge to some point of no interest.



Figure 6: BCD for smooth/non-smooth minimization.

#### **BCD Convergence**

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) \quad \text{s.t. } \boldsymbol{x} \in \mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times \ldots \times \mathcal{X}_m \subseteq \mathbb{R}^n$$
(18)

• A well-known BCD convergence result due to Bertsekas:

**Theorem 2.** ([Bertsekas]) Suppose that f is continuously differentiable over the convex closed set  $\mathcal{X}$ . Furthermore, suppose that for each i

$$g_i(\boldsymbol{\xi}) \triangleq f(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_{i-1}, \boldsymbol{\xi}, \boldsymbol{x}_{i+1}, \dots, \boldsymbol{x}_m)$$

is strictly convex. Let  $\{x^r\}$  be the sequence generated by BCD method. Then every limit point of  $\{x^r\}$  is a stationary point of problem (18).

• If  $\mathcal{X}$  is (convex) compact, i.e., closed and bounded, then strict convexity of  $g_i(\boldsymbol{\xi})$  can be relaxed to having a unique optimal solution.

• Application: Iterative water-filling for MIMO MAC sum capacity max.:

$$(\triangle) \max_{\{\mathbf{Q}_k\}_{k=1}^K} \log \det \left( \sum_{k=1}^K \mathbf{H}_k \mathbf{Q}_k \mathbf{H}_k^H + \mathbf{I} \right), \quad \text{s.t. } \operatorname{Tr}(\mathbf{Q}_k) \le P_k, \ \mathbf{Q}_k \succeq \mathbf{0}, \ \forall k$$

- Iterative water-filling converges to a global optimal solution of  $(\triangle)$ , because
  - BCD subproblem is strictly convex (assuming full column rankness of  $\mathbf{H}_k$ );
  - $\mathcal{X}_k$  is a convex closed subset;
  - $(\triangle)$  is a convex problem, so stationary point  $\Longrightarrow$  global optimal solution

#### **Generalization of Bertsekas' Convergence Result**

• Generalization 1: Relax Strict Convexity to Strict Quasiconvexity<sup>2</sup> [Grippo-Sciandrone]

**Theorem 3.** Suppose that the function f is continuously differentiable and strictly quasiconvex with respect to  $x_i$  on  $\mathcal{X}$ , for each i = 1, ..., m - 2 and that the sequence  $\{x^r\}$  generated by the BCD method has limit points. Then, every limit point is a stationary point of problem (18).

• Application: Low-Rank Matrix Completion

$$(\triangle) \quad \min_{\mathbf{X},\mathbf{Y},\mathbf{Z}} \ \frac{1}{2} \|\mathbf{X}\mathbf{Y} - \mathbf{Z}\|_F^2 \quad \text{s.t.} \ Z_{ij} = M_{ij}, \ \forall (i,j) \in \mathbf{\Omega}$$

– m=3 and  $(\triangle)$  is strictly convex w.r.t.  ${\bf Z} \Longrightarrow {\sf BCD}$  converges to a stationary point.

 $f^2f$  is strictly quasiconvex w.r.t.  $x_i \in \mathcal{X}_i$  on  $\mathcal{X}$  if for every  $x \in \mathcal{X}$  and  $y_i \in \mathcal{X}_i$  with  $y_i 
eq x_i$  we have

$$f(x_1, \ldots, tx_i + (1-t)y_i, \ldots, x_m) < \max\{f(x), f(x_1, \ldots, y_i, \ldots, x_m)\}, \forall t \in (0, 1).$$

• Generalization 2: Without Solution Uniqueness

**Theorem 4.** Suppose that f is pseudoconvex<sup>3</sup> on  $\mathcal{X}$  and that  $\mathcal{L}^{0}_{\mathcal{X}} := \{x \in \mathcal{X} : f(x) \leq f(x^{0})\}$  is compact. Then, the sequence generated by BCD method has limit points and every limit point is a global minimizer of f.

• Application: Iterative water-filling for MIMO-MAC sum capacity max.

$$\max_{\{\mathbf{Q}_k\}_{k=1}^K} \log \det \left( \sum_{k=1}^K \mathbf{H}_k \mathbf{Q}_k \mathbf{H}_k^H + \mathbf{I} \right)$$
  
s.t.  $\operatorname{Tr}(\mathbf{Q}_k) \leq P_k, \ \mathbf{Q}_k \succeq \mathbf{0}, \ k = 1, \dots, K$ 

- f is convex, thus pseudoconvex;
- { $\mathbf{Q}_k \mid \operatorname{Tr}(\mathbf{Q}_k) \leq P_k, \ \mathbf{Q}_k \succeq \mathbf{0}$ } is compact;
- iterative water-filling converges to a globally optimal solution.

<sup>3</sup> f is pseudoconvex if for all  $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{X}$  such that  $\nabla f(\boldsymbol{x})^T (\boldsymbol{y} - \boldsymbol{x}) \ge 0$ , we have  $f(\boldsymbol{y}) \ge f(\boldsymbol{x})$ . Notice that "convex  $\subset$  pseudoconvex  $\subset$  quasiconvex".

• Generalization 3: Without Solution Uniqueness, Pseudoconvexity and Compactness

**Theorem 5.** Suppose that f is continuously differentiable, and that  $\mathcal{X}$  is convex and closed. Moreover, if there are only two blocks, i.e., m = 2, then every limit point generated by BCD is a stationary point of f.

• Application: NMF

$$\min_{\mathbf{U}\in\mathbb{R}^{m\times k},\mathbf{V}\in\mathbb{R}^{k\times n}} \|\mathbf{M}-\mathbf{U}\mathbf{V}\|_{F}^{2} \qquad \text{s.t. } \mathbf{U}\geq\mathbf{0}, \ \mathbf{V}\geq\mathbf{0}$$

- Alternating NLS converges to a stationary point of the NMF problem, since
  - the objective is continuously differentiable;
  - the feasible set is convex and closed;
  - -m=2.

# Summary

- MM and BCD have great potential in handling nonconvex problems and realizing fast/distributed implementations for large-scale convex problems;
- Many well-known algorithms can be interpreted as special cases of MM and BCD;
- Under some conditions, convergence to stationary point can be guaranteed by MM and BCD.

#### References

M. Razaviyayn, M. Hong, and Z.-Q. Luo, "A unified convergence analysis of block successive minimization methods for nonsmooth optimization," submitted to *SIAM Journal on Optimization*, available online at http://arxiv.org/abs/ 1209.2385.

L. Grippo and M. Sciandrone, "On the convergence of the block nonlinear Gauss-Seidel method under convex constraints," *Operation research letter* vol. 26, pp. 127-136, 2000

E. J. Candes, M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted  $\ell_1$  minimization," *J. Fourier Anal. Appl.*, 14 (2008), pp. 877-905.

M. Zibulevsky and M. Elad, " $\ell_1 - \ell_2$  optimization in signal and image processing," *IEEE Signal Process. Magazine*, May 2010, pp.76-88.

D. P. Bertsekas, "Nonlinear Programming," Athena Scientific, 1st Ed., 1995

W. Yu and J. M. Cioffi, "Sum capacity of a Gaussian vector broadcast channel", *IEEE Trans. Inf. Theory*, vol. 50, no. 1, pp. 145-152, Jan. 2004

Z. Wen, W. Yin, and Y. Zhang, "Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm," Rice CAAM Tech Report 10-07.

Daniel D. Lee and H. Sebastian Seung, "Algorithms for Non-negative Matrix Factorization". Advances in Neural Information Processing Systems 13: Proceedings of the 2000 Conference. MIT Press. pp. 556-562, 2001.