Majorization Minimization (MM) and Block Coordinate Descent (BCD)

Wing-Kin (Ken) Ma
Department of Electronic Engineering,
The Chinese University Hong Kong, Hong Kong

ELEG5481, Lecture 15
Acknowledgment: Qiang Li for helping prepare the slides.

Outline

- Majorization Minimization (MM)
- Convergence
- Applications
- Block Coordinate Descent (BCD)
- Applications
- Convergence
- Summary

Majorization Minimization

Consider the following problem

$$
\begin{equation*}
\min _{\boldsymbol{x}} f(\boldsymbol{x}) \quad \text { s.t. } \boldsymbol{x} \in \mathcal{X} \tag{1}
\end{equation*}
$$

where \mathcal{X} is a closed convex set; $f(\cdot)$ may be non-convex and/or nonsmooth.

- Challenge: For a general $f(\cdot)$, problem (1) can be difficult to solve.
- Majorization Minimization: Iteratively generate $\left\{\boldsymbol{x}^{r}\right\}$ as follows

$$
\begin{equation*}
\boldsymbol{x}^{r} \in \min _{\boldsymbol{x}} u\left(\boldsymbol{x}, \boldsymbol{x}^{r-1}\right) \quad \text { s.t. } \boldsymbol{x} \in \mathcal{X} \tag{2}
\end{equation*}
$$

where $u\left(\boldsymbol{x}, \boldsymbol{x}^{r-1}\right)$ is a surrogate function of $f(\boldsymbol{x})$, satisfying

1. $u\left(\boldsymbol{x}, \boldsymbol{x}^{r}\right) \geq f(\boldsymbol{x}), \quad \forall \boldsymbol{x}^{r}, \boldsymbol{x} \in \mathcal{X}$;
2. $u\left(\boldsymbol{x}^{r}, \boldsymbol{x}^{r}\right)=f\left(\boldsymbol{x}^{r}\right)$;

Figure 1: An pictorial illustration of MM algorithm.

Property 1. $\left\{f\left(\boldsymbol{x}^{r}\right)\right\}$ is nonincreasing, i.e., $f\left(\boldsymbol{x}^{r}\right) \leq f\left(\boldsymbol{x}^{r-1}\right), \forall r=1,2, \ldots$
Proof. $f\left(\boldsymbol{x}^{r}\right) \leq u\left(\boldsymbol{x}^{r}, \boldsymbol{x}^{r-1}\right) \leq u\left(\boldsymbol{x}^{r-1}, \boldsymbol{x}^{r-1}\right)=f\left(\boldsymbol{x}^{r-1}\right)$

- The nonincreasing property of $\left\{f\left(\boldsymbol{x}^{r}\right)\right\}$ implies that $f\left(\boldsymbol{x}^{r}\right) \rightarrow \bar{f}$. But how about the convergence of the iterates $\left\{\boldsymbol{x}^{r}\right\}$?

Technical Preliminaries

- Limit point: \bar{x} is a limit point of $\left\{x_{k}\right\}$ if there exists a subsequence of $\left\{x_{k}\right\}$ that converges to \bar{x}. Note that every bounded sequence in \mathbb{R}^{n} has a limit point (or convergent subsequence);
- Directional derivative: Let $f: \mathcal{D} \rightarrow \mathbb{R}$ be a function where $\mathcal{D} \subseteq \mathbb{R}^{m}$ is a convex set. The directional derivative of f at point x in direction \boldsymbol{d} is defined by

$$
f^{\prime}(\boldsymbol{x} ; \boldsymbol{d}) \triangleq \liminf _{\lambda \downarrow 0} \frac{f(\boldsymbol{x}+\lambda \boldsymbol{d})-f(\boldsymbol{x})}{\lambda} .
$$

- If f is differentiable, then $f^{\prime}(\boldsymbol{x} ; \boldsymbol{d})=\boldsymbol{d}^{T} \nabla f(\boldsymbol{x})$.
- Stationary point: $\boldsymbol{x} \in \mathcal{X}$ is a stationary point of $f(\cdot)$ if

$$
\begin{equation*}
f^{\prime}(\boldsymbol{x} ; \boldsymbol{d}) \geq 0, \forall \boldsymbol{d} \text { such that } \boldsymbol{x}+\boldsymbol{d} \in \mathcal{D} . \tag{3}
\end{equation*}
$$

- A stationary point may be a local min., a local max. or a saddle point;
- If $\mathcal{D}=\mathbb{R}^{n}$ and f is differentiable, then $(3) \Longleftrightarrow \nabla f(\boldsymbol{x})=\mathbf{0}$.

Convergence of MM

- Assumption $1 u(\cdot, \cdot)$ satisfies the following conditions

$$
\left\{\begin{array}{l}
u(\boldsymbol{y}, \boldsymbol{y})=f(\boldsymbol{y}), \quad \forall \boldsymbol{y} \in \mathcal{X} \tag{4a}\\
u(\boldsymbol{x}, \boldsymbol{y}) \geq f(\boldsymbol{x}), \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{X} \\
\left.u^{\prime}(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{d})\right|_{\boldsymbol{x}=\boldsymbol{y}=f^{\prime}(\boldsymbol{y} ; \boldsymbol{d}), \quad \forall \boldsymbol{d} \text { with } \boldsymbol{y}+\boldsymbol{d} \in \mathcal{X}} ^{u(\boldsymbol{x}, \boldsymbol{y}) \text { is continuous in }(\boldsymbol{x}, \boldsymbol{y})}
\end{array}\right.
$$

- (4c) means the 1 st order local behavior of $u\left(\cdot, \boldsymbol{x}^{r-1}\right)$ is the same as $f(\cdot)$.

Convergence of MM

Theorem 1. [Razaviyayn-Hong-Luo] Assume that Assumption 1 is satisfied. Then every limit point of the iterates generated by MM algorithm is a stationary point of problem (1).
Proof. From Property 1, we know that $f\left(\boldsymbol{x}^{r+1}\right) \leq u\left(\boldsymbol{x}^{r+1}, \boldsymbol{x}^{r}\right) \leq u\left(\boldsymbol{x}, \boldsymbol{x}^{r}\right), \forall \boldsymbol{x} \in$ \mathcal{X}. Now assume that there exists a subsequence $\left\{\boldsymbol{x}^{r_{j}}\right\}$ of $\left\{\boldsymbol{x}^{r}\right\}$ converging to a limit point \boldsymbol{z}, i.e., $\lim _{j \rightarrow \infty} \boldsymbol{x}^{r_{j}}=\boldsymbol{z}$. Then

$$
u\left(\boldsymbol{x}^{r_{j+1}}, \boldsymbol{x}^{r_{j+1}}\right)=f\left(\boldsymbol{x}^{r_{j+1}}\right) \leq f\left(\boldsymbol{x}^{r_{j}+1}\right) \leq u\left(\boldsymbol{x}^{r_{j}+1}, \boldsymbol{x}^{r_{j}}\right) \leq u\left(\boldsymbol{x}, \boldsymbol{x}^{r_{j}}\right), \forall \boldsymbol{x} \in \mathcal{X}
$$

Letting $j \rightarrow \infty$, we obtain $u(\boldsymbol{z}, \boldsymbol{z}) \leq u(\boldsymbol{x}, \boldsymbol{z}), \quad \forall \boldsymbol{x} \in \mathcal{X}$, which implies that

$$
\left.u^{\prime}(\boldsymbol{x}, \boldsymbol{z} ; \boldsymbol{d})\right|_{\boldsymbol{x}=\boldsymbol{z}} \geq 0, \quad \forall \boldsymbol{z}+\boldsymbol{d} \in \mathcal{X}
$$

Combining the above inequality with (4c) (i.e., $\left.u^{\prime}(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{d})\right|_{\boldsymbol{x}=\boldsymbol{y}}=$ $f^{\prime}(\boldsymbol{y} ; \boldsymbol{d}), \quad \forall \boldsymbol{d}$ with $\left.\boldsymbol{y}+\boldsymbol{d} \in \mathcal{X}\right)$, we have

$$
f^{\prime}(\boldsymbol{z} ; \boldsymbol{d}) \geq 0, \quad \forall \boldsymbol{z}+\boldsymbol{d} \in \mathcal{X}
$$

Applications - Nonnegative Least Squares

In many engineering applications, we encounter the following problem

$$
\begin{equation*}
(\mathrm{NLS}) \min _{\boldsymbol{x} \geq \mathbf{0}}\|\mathbf{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2} \tag{5}
\end{equation*}
$$

where $\boldsymbol{b} \in \mathbb{R}_{+}^{m}, \boldsymbol{b} \neq \mathbf{0}$, and $\mathbf{A} \in \mathbb{R}_{++}^{m \times n}$.

- It's an LS problem with nonnegative constraints, so the conventional LS solution may not be feasible for (5).
- A simple multiplicative updating algorithm:

$$
\begin{equation*}
\boldsymbol{x}_{l}^{r}=c_{l}^{r} \boldsymbol{x}_{l}^{r-1}, \quad l=1, \ldots, n \tag{6}
\end{equation*}
$$

where \boldsymbol{x}_{l}^{r} is the l th component of \boldsymbol{x}^{r}, and $c_{l}^{r}=\frac{\left[\mathbf{A}^{T} \mathbf{b}\right]_{l}}{\left[\mathbf{A}^{T} \mathbf{A} \boldsymbol{x}^{r-1}\right]_{l}}$.

- Starting with $\boldsymbol{x}^{0}>\mathbf{0}$, then all \boldsymbol{x}^{r} generated by (6) are nonnegative.

Figure 2: $\left\|\mathbf{A} \boldsymbol{x}^{r}-\boldsymbol{b}\right\|_{2}$ vs. the number of iterations.

- Usually the multiplicative update converges within a few tens of iterations.
- MM interpretation: Let $f(\boldsymbol{x}) \triangleq\|\mathbf{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}$. The multiplicative update essentially solves the following problem

$$
\min _{\boldsymbol{x} \geq \mathbf{0}} u\left(\boldsymbol{x}, \boldsymbol{x}^{r-1}\right)
$$

where

$$
\begin{aligned}
u\left(\boldsymbol{x}, \boldsymbol{x}^{r-1}\right) & \triangleq f\left(\boldsymbol{x}^{r-1}\right)+\left(\boldsymbol{x}-\boldsymbol{x}^{r-1}\right)^{T} \nabla f\left(\boldsymbol{x}^{r-1}\right)+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}^{r-1}\right)^{T} \boldsymbol{\Phi}\left(\boldsymbol{x}^{r-1}\right)\left(\boldsymbol{x}-\boldsymbol{x}^{r-1}\right) \\
\boldsymbol{\Phi}\left(\boldsymbol{x}^{r-1}\right) & =\operatorname{Diag}\left(\frac{\left[\mathbf{A}^{T} \mathbf{A} \boldsymbol{x}^{r-1}\right]_{1}}{\boldsymbol{x}_{1}^{r-1}}, \ldots, \frac{\left[\mathbf{A}^{T} \mathbf{A} \boldsymbol{x}^{r-1}\right]_{n}}{\boldsymbol{x}_{n}^{r-1}}\right)
\end{aligned}
$$

- Observations:

$$
\left\{\begin{array} { l }
{ u (\boldsymbol { x } , \boldsymbol { x } ^ { r - 1 }) \text { is quadratic approx. of } f (\boldsymbol { x }) , } \\
{ \boldsymbol { \Phi } (\boldsymbol { x } ^ { r - 1 }) \succeq \mathbf { A } ^ { T } \mathbf { A } , }
\end{array} \Longrightarrow \left\{\begin{array}{l}
u\left(\boldsymbol{x}, \boldsymbol{x}^{r-1}\right) \geq f(\boldsymbol{x}), \forall \boldsymbol{x} \in \mathbb{R}^{n}, \\
u\left(\boldsymbol{x}^{r-1}, \boldsymbol{x}^{r-1}\right)=f\left(\boldsymbol{x}^{r-1}\right)
\end{array}\right.\right.
$$

- The multiplicative update converges to an optimal solution of NLS (by the MM convergence in Theorem 1 and convexity of NLS).

Applications - Convex-Concave Procedure/ DC Programming

- Suppose that $f(\boldsymbol{x})$ has the following form

$$
f(\boldsymbol{x})=g(\boldsymbol{x})-h(\boldsymbol{x}),
$$

where $g(\boldsymbol{x})$ and $h(\boldsymbol{x})$ are convex and differentiable. Thus, $f(\boldsymbol{x})$ is in general nonconvex.

- DC Programming: Construct $u(\cdot, \cdot)$ as

$$
u\left(\boldsymbol{x}, \boldsymbol{x}^{r}\right)=g(\boldsymbol{x})-\underbrace{\left(h\left(\boldsymbol{x}^{r}\right)+\nabla_{\boldsymbol{x}} h\left(\boldsymbol{x}^{r}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{x}^{r}\right)\right)}_{\text {linearization of } h \text { at } x^{r}}
$$

- By the 1st order condition of $h(\boldsymbol{x})$, it's easy to show that

$$
u\left(\boldsymbol{x}, \boldsymbol{x}^{r}\right) \geq f(\boldsymbol{x}), \forall \boldsymbol{x} \in \mathcal{X}, \quad u\left(\boldsymbol{x}^{r}, \boldsymbol{x}^{r}\right)=f\left(\boldsymbol{x}^{r}\right)
$$

- Sparse Signal Recovery by DC Programming

$$
\begin{equation*}
\min _{\boldsymbol{x}}\|\boldsymbol{x}\|_{0} \quad \text { s.t. } \boldsymbol{y}=\mathbf{A} \boldsymbol{x} \tag{7}
\end{equation*}
$$

- Apart from the popular $\ell_{1}{ }^{x}$ approximation, consider the following concave approximation:

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \sum_{i=1}^{n} \log \left(1+\left|x_{i}\right| / \epsilon\right) \quad \text { s.t. } \boldsymbol{y}=\mathbf{A} \boldsymbol{x}
$$

Figure 3: $\log (1+|x| / \epsilon)$ promotes more sparsity than ℓ_{1}

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \sum_{i=1}^{n} \log \left(1+\left|x_{i}\right| / \epsilon\right) \quad \text { s.t. } \boldsymbol{y}=\mathbf{A} \boldsymbol{x}
$$

which can be equivalently written as

$$
\begin{equation*}
\min _{\boldsymbol{x}, \boldsymbol{z} \in \mathbb{R}^{n}} \sum_{i=1}^{n} \log \left(z_{i}+\epsilon\right) \quad \text { s.t. } \boldsymbol{y}=\mathbf{A} \boldsymbol{x},\left|x_{i}\right| \leq z_{i}, i=1, \ldots, n \tag{8}
\end{equation*}
$$

- Problem (8) minimizes a concave objective, so it's a special case of DC programming $(g(\boldsymbol{x})=0)$. Linearizing the concave function at $\left(\boldsymbol{x}^{r}, \boldsymbol{z}^{r}\right)$ yields

$$
\left(\boldsymbol{x}^{r+1}, \boldsymbol{z}^{r+1}\right)=\arg \min \sum_{i=1}^{n} \frac{z_{i}}{z_{i}^{r}+\epsilon} \quad \text { s.t. } \boldsymbol{y}=\mathbf{A} \boldsymbol{x},\left|x_{i}\right| \leq z_{i}, i=1, \ldots, n
$$

- We solve a sequence of reweighted ℓ_{1} problems.

Fig. 2 Sparse signal recovery through reweighted ℓ_{1} iterations. (a) Original length $n=512$ signal x_{0} with 130 spikes. (b) Scatter plot, coefficient-by-coefficient, of x_{0} versus its reconstruction $x^{(0)}$ using unweighted ℓ_{1} minimization. (c) Reconstruction $x^{(1)}$ after the first reweighted iteration. (d) Reconstruction $x^{(2)}$ after the second reweighted iteration

Applications - $\ell_{2}-\ell_{p}$ Optimization

- Many problems involve solving the following problem (e.g., basis-pursuit denoising)

$$
\begin{equation*}
\min _{\boldsymbol{x}} f(\boldsymbol{x}) \triangleq \frac{1}{2}\|\boldsymbol{y}-\mathbf{A} \boldsymbol{x}\|_{2}^{2}+\mu\|\boldsymbol{x}\|_{p} \tag{9}
\end{equation*}
$$

where $p \geq 1$.

- If $\mathbf{A}=\mathbf{I}$ or \mathbf{A} is unitary, optimal \boldsymbol{x}^{\star} is computed in closed-form as

$$
\boldsymbol{x}^{\star}=\mathbf{A}^{T} \boldsymbol{y}-\operatorname{Proj}_{C}\left(\mathbf{A}^{T} \boldsymbol{y}\right)
$$

where $C \triangleq\left\{\boldsymbol{x}:\|\boldsymbol{x}\|_{p *} \leq \mu\right\},\|\cdot\|_{p *}$ is the dual norm of $\|\cdot\|_{p}$ and Proj_{C} denotes the projection operator. In particular, for $p=1$

$$
x_{i}^{\star}=\operatorname{soft}\left(y_{i}, \mu\right), \quad i=1, \ldots, n
$$

where $\operatorname{soft}(u, a) \triangleq \operatorname{sign}(u) \max \{|u|-a, 0\}$ denotes a soft-thresholding operation.

- For general \mathbf{A}, there is no simple closed-form solution for (9).
- MM for $\ell_{2}-\ell_{p}$ Problem: Consider a modified $\ell_{2}-\ell_{p}$ problem

$$
\begin{equation*}
\min _{\boldsymbol{x}} u\left(\boldsymbol{x}, \boldsymbol{x}^{r}\right) \triangleq f(\boldsymbol{x})+\operatorname{dist}\left(\boldsymbol{x}, \boldsymbol{x}^{r}\right) \tag{10}
\end{equation*}
$$

where $\operatorname{dist}\left(\boldsymbol{x}, \boldsymbol{x}^{r}\right) \triangleq \frac{c}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{r}\right\|_{2}^{2}-\frac{1}{2}\left\|\mathbf{A} \boldsymbol{x}-\mathbf{A} \boldsymbol{x}^{r}\right\|_{2}^{2}$ and $c>\lambda_{\max }\left(\mathbf{A}^{T} \mathbf{A}\right)$.
$-\operatorname{dist}\left(\boldsymbol{x}, \boldsymbol{x}^{r}\right) \geq 0 \forall \boldsymbol{x} \Longrightarrow u\left(\boldsymbol{x}, \boldsymbol{x}^{r}\right)$ majorizes $f(\boldsymbol{x})$.

- $u\left(\boldsymbol{x}, \boldsymbol{x}^{r}\right)$ can be reexpressed as

$$
u\left(\boldsymbol{x}, \boldsymbol{x}^{r}\right)=\frac{c}{2}\left\|\boldsymbol{x}-\overline{\boldsymbol{x}}^{r}\right\|_{2}^{2}+\mu\|\boldsymbol{x}\|_{p}+\text { const. },
$$

where

$$
\overline{\boldsymbol{x}}^{r}=\frac{1}{c} \mathbf{A}^{T}\left(\boldsymbol{y}-\mathbf{A} \boldsymbol{x}^{r}\right)+\boldsymbol{x}^{r} .
$$

- The modified $\ell_{2}-\ell_{p}$ problem (10) has a simple soft-thresholding solution.
- Repeatedly solving problem (10) leads to an optimal solution of the $\ell_{2}-\ell_{p}$ problem (by the MM convergence in Theorem 1)

Applications - Expectation Maximization (EM)

- Consider an ML estimate of θ, given the random observation w

$$
\hat{\theta}_{\mathrm{ML}}=\arg \min _{\theta}-\ln p(w \mid \theta)
$$

- Suppose that there are some missing data or hidden variables z in the model. Then, EM algorithm iteratively compute an ML estimate $\hat{\theta}$ as follows:
- E-step:

$$
g\left(\theta, \theta^{r}\right) \triangleq \mathbb{E}_{z \mid w, \theta^{r}}\{\ln p(w, z \mid \theta)\}
$$

- M-step:

$$
\theta^{r+1}=\arg \max _{\theta} g\left(\theta, \theta^{r}\right)
$$

- repeat the above two steps until convergence.
- EM algorithm generates a nonincreasing sequence of $\left\{-\ln p\left(w \mid \theta^{r}\right)\right\}$.
- EM algorithm can be interpreted by MM.
- MM interpretation of EM algorithm:

$$
\begin{align*}
& -\ln p(w \mid \theta) \\
= & -\ln \mathbb{E}_{z \mid \theta} p(w \mid z, \theta) \\
= & -\ln \mathbb{E}_{z \mid \theta}\left[\frac{p\left(z \mid w, \theta^{r}\right) p(w \mid z, \theta)}{p\left(z \mid w, \theta^{r}\right)}\right] \\
= & -\ln \mathbb{E}_{z \mid w, \theta^{r}}\left[\frac{p(z \mid \theta) p(w \mid z, \theta)}{p\left(z \mid w, \theta^{r}\right)}\right] \quad \text { (interchange the integrations) } \\
\leq & -\mathbb{E}_{z \mid w, \theta^{r}} \ln \left[\frac{p(z \mid \theta) p(w \mid z, \theta)}{p\left(z \mid w, \theta^{r}\right)}\right] \quad(\text { Jensen's inequality) } \\
= & -\mathbb{E}_{z \mid w, \theta^{r}} \ln p(w, z \mid \theta)+\mathbb{E}_{z \mid w, \theta^{r}} \ln p\left(z \mid w, \theta^{r}\right) \tag{11a}\\
\triangleq & u\left(\theta, \theta^{r}\right)
\end{align*}
$$

$-u\left(\theta, \theta^{r}\right)$ majorizes $-\ln p(w \mid \theta)$, and $-\ln p\left(w \mid \theta^{r}\right)=u\left(\theta^{r}, \theta^{r}\right)$;

- E-step essentially constructs $u\left(\theta, \theta^{r}\right)$;
- M-step minimizes $u\left(\theta, \theta^{r}\right)$ (note θ appears in the 1st term of (11a) only).

Outline

- Majorization Minimization (MM)
- Convergence
- Applications
- Block Coordinate Descent (BCD)
- Applications
- Convergence
- Summary

Block Coordinate Descent

- Consider the following problem

$$
\begin{equation*}
\min _{\boldsymbol{x}} f(\boldsymbol{x}) \quad \text { s.t. } \boldsymbol{x} \in \mathcal{X}=\mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{m} \subseteq \mathbb{R}^{n} \tag{12}
\end{equation*}
$$

where each $\mathcal{X}_{i} \subseteq \mathbb{R}^{n_{i}}$ is closed, nonempty and convex.

- BCD Algorithm:

1: Find a feasible point $\boldsymbol{x}^{0} \in \mathcal{X}$ and set $r=0$
2: repeat
3: $\quad r=r+1, i=(r-1 \bmod m)+1$
4: Let $\boldsymbol{x}_{i}^{\star} \in \arg \min _{\boldsymbol{x} \in \mathcal{X}_{i}} f\left(\boldsymbol{x}_{1}^{r-1}, \ldots, \boldsymbol{x}_{i-1}^{r-1}, \boldsymbol{x}, \boldsymbol{x}_{i+1}^{r-1}, \ldots, \boldsymbol{x}_{m}^{r-1}\right)$
5: \quad Set $\boldsymbol{x}_{i}^{r}=\boldsymbol{x}_{i}^{\star}$ and $\boldsymbol{x}_{k}^{r}=\boldsymbol{x}_{k}^{r-1}, \forall k \neq i$
6: until some convergence criterion is met

- Merits of BCD

1. each subproblem is much easier to solve, or even has a closed-form solution;
2. The objective value is nonincreasing along the BCD updates;
3. it allows parallel or distributed implementations.

Applications - $\ell_{2}-\ell_{1}$ Optimization Problem

- Let us revisit the $\ell_{2}-\ell_{1}$ problem

$$
\begin{equation*}
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x}) \triangleq \frac{1}{2}\|\boldsymbol{y}-\mathbf{A} \boldsymbol{x}\|_{2}^{2}+\mu\|\boldsymbol{x}\|_{1} \tag{13}
\end{equation*}
$$

- Apart from MM, BCD is another efficient approach to solve (13):
- Optimize x_{k} while fixing $x_{j}=x_{j}^{r}, \forall j \neq k$:

$$
\min _{x_{k}} f_{k}\left(x_{k}\right) \triangleq \frac{1}{2} \underbrace{\| \boldsymbol{y}-\sum_{j \neq k} \boldsymbol{a}_{j} x_{j}^{r}}_{\triangleq \overline{\boldsymbol{y}}}-\boldsymbol{a}_{k} x_{k} \|_{2}^{2}+\mu\left|x_{k}\right|
$$

- The optimal x_{k} has a closed form:

$$
x_{k}^{\star}=\operatorname{soft}\left(\boldsymbol{a}_{k}^{T} \overline{\boldsymbol{y}} /\left\|\boldsymbol{a}_{k}\right\|^{2}, \mu /\left\|\boldsymbol{a}_{k}\right\|^{2}\right)
$$

- Cyclically update $x_{k}, k=1, \ldots, n$ until convergence.

Applications - Iterative Water-filling for MIMO MAC Sum Capacity Maximization

- MIMO Channel Capacity Maximization
- MIMO received signal model:

$$
\boldsymbol{y}(t)=\mathbf{H} \boldsymbol{x}(t)+\boldsymbol{n}(t)
$$

where

```
x(t)\in\mp@subsup{\mathbb{C}}{}{N}\quad\mathrm{ Tx signal}
H}\in\mp@subsup{\mathbb{C}}{}{N\timesN}\quad\mathrm{ MIMO channel matrix
n(t)\in\mp@subsup{\mathbb{C}}{}{N}\quad\mathrm{ standard additive Gaussian noise, i.e., n}(t)~\mathcal{CN}(\mathbf{0},\mathbf{I}).
```


Figure 4: MIMO system model.

- MIMO channel capacity:

$$
C(\mathbf{Q})=\log \operatorname{det}\left(\mathbf{I}+\mathbf{H Q} \mathbf{H}^{H}\right)
$$

where $\mathbf{Q}=\mathrm{E}\left\{\boldsymbol{x}(t) \boldsymbol{x}(t)^{H}\right\}$ is the covariance of the tx signal.

- MIMO channel capacity maximization:

$$
\max _{\mathbf{Q} \succeq \mathbf{0}} \log \operatorname{det}\left(\mathbf{I}+\mathbf{H Q} \mathbf{H}^{H}\right) \quad \text { s.t. } \operatorname{Tr}(\mathbf{Q}) \leq P
$$

where $P>0$ is the transmit power budget.

- The optimal \mathbf{Q}^{\star} is given by the well-known water-filling solution, i.e.,

$$
\mathbf{Q}^{\star}=\mathbf{V} \operatorname{Diag}\left(\boldsymbol{p}^{\star}\right) \mathbf{V}^{H}
$$

where $\mathbf{H}=\mathbf{U D i a g}\left(\sigma_{1}, \ldots, \sigma_{N}\right) \mathbf{V}^{H}$ is the SVD of \mathbf{H}, and $\boldsymbol{p}^{\star}=\left[p_{1}^{\star}, \ldots, p_{N}^{\star}\right]$ is the power allocation with $p_{i}^{\star}=\max \left(0, \mu-1 / \sigma_{i}^{2}\right)$ and $\mu \geq 0$ being the water-level such that $\sum_{i} p_{i}^{\star}=P$.

- MIMO Multiple-Access Channel (MAC) Sum-Capacity Maximization
- Multiple transmitters simultaneously communicate with one receiver:

Figure 5: MIMO multiple-access channel (MAC).

- Received signal model:

$$
\boldsymbol{y}(t)=\sum_{k=1}^{K} \mathbf{H}_{k} \boldsymbol{x}_{k}(t)+\boldsymbol{n}(t)
$$

- MAC sum capacity:

$$
C_{\mathrm{MAC}}\left(\left\{\mathbf{Q}_{k}\right\}_{k=1}^{K}\right)=\log \operatorname{det}\left(\sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Q}_{k} \mathbf{H}_{k}^{H}+\mathbf{I}\right)
$$

- MAC sum capacity maximization:

$$
\begin{align*}
& \max _{\left\{\mathbf{Q}_{k}\right\}_{k=1}^{K}} \log \operatorname{det}\left(\sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Q}_{k} \mathbf{H}_{k}^{H}+\mathbf{I}\right) \tag{14}\\
& \quad \text { s.t. } \operatorname{Tr}\left(\mathbf{Q}_{k}\right) \leq P_{k}, \mathbf{Q}_{k} \succeq \mathbf{0}, k=1, \ldots, K
\end{align*}
$$

- Problem (14) is convex w.r.t. $\left\{\mathbf{Q}_{k}\right\}$, but it has no simple closed-form solution.
- Alternatively, we can apply BCD to (14) and cyclically update \mathbf{Q}_{k} while fixing \mathbf{Q}_{j} for $j \neq k$

$$
\begin{aligned}
&(\triangle) \quad \max _{\mathbf{Q}_{k}} \log \operatorname{det}\left(\mathbf{H}_{k} \mathbf{Q}_{k} \mathbf{H}_{k}^{H}+\boldsymbol{\Phi}\right) \\
& \text { s.t. } \operatorname{Tr}\left(\mathbf{Q}_{k}\right) \leq P_{k}, \quad \mathbf{Q}_{k} \succeq \mathbf{0}
\end{aligned}
$$

where $\boldsymbol{\Phi}=\sum_{j \neq k} \mathbf{H}_{j} \mathbf{Q}_{j} \mathbf{H}_{j}^{H}+\mathbf{I}$

- (\triangle) has a closed-form water-filling solution, just like the previous single-user MIMO case.

Applications - Low-Rank Matrix Completion

- In a previous lecture, we have introduced the low-rank matrix completion problem, which has huge potential in sales recommendation.
- For example, we would like to predict how much someone is going to like a movie based on its movie preferences:
movies

$$
M=\left[\begin{array}{lllllll}
2 & 3 & 1 & ? & ? & 5 & 5 \\
1 & ? & 4 & 2 & ? & ? & ? \\
? & 3 & 1 & ? & 2 & 2 & 2 \\
? & ? & ? & 3 & ? & 1 & 5 \\
2 & ? & 4 & ? & ? & 5 & 3
\end{array}\right] \text { users }
$$

- M is assumed to be of low rank, as only a few factors affect users' preferences.

$$
\min _{\mathbf{W} \in \mathbb{R}^{m \times n}} \operatorname{rank}(\mathbf{W})^{-} \| \mathbf{W} \mathbf{S . t .}_{*} W_{i j}=M_{i j}, \forall(i, j) \in \boldsymbol{\Omega}
$$

- An alternative low-rank matrix completion formulation [Wen-Yin-Zhang]:

$$
(\triangle) \quad \min _{\mathbf{X}, \mathbf{Y}, \mathbf{Z}} \frac{1}{2}\|\mathbf{X} \mathbf{Y}-\mathbf{Z}\|_{F}^{2} \quad \text { s.t. } Z_{i j}=M_{i j}, \forall(i, j) \in \boldsymbol{\Omega}
$$

where $\mathbf{X} \in \mathbb{R}^{M \times L}, \mathbf{Y} \in \mathbb{R}^{L \times N}, \mathbf{Z} \in \mathbb{R}^{M \times N}$, and L is an estimate of min. rank.

- Advantage of adopting (\triangle) : When BCD is applied, each subproblem of (\triangle) has a closed-form solution:

$$
\begin{aligned}
\mathbf{X}^{r+1} & =\mathbf{Z}^{r} \mathbf{Y}^{r T}\left(\mathbf{Y}^{r} \mathbf{Y}^{r T}\right)^{\dagger}, \\
\mathbf{Y}^{r+1} & =\left(\mathbf{X}^{r+1^{T}} \mathbf{X}^{r+1}\right)^{\dagger}\left(\mathbf{X}^{r+1^{T}} \mathbf{Z}^{r}\right), \\
{\left[\mathbf{Z}^{r+1}\right]_{i, j} } & = \begin{cases}{\left[\mathbf{X}^{r+1} \mathbf{Y}^{r+1}\right]_{i, j},} & \text { for }(i, j) \notin \boldsymbol{\Omega} \\
M_{i, j}, & \text { for }(i, j) \in \boldsymbol{\Omega}\end{cases}
\end{aligned}
$$

Applications - Maximizing A Convex Quadratic Function

- Consider maximizing a convex quadratic problem:

$$
\text { (■) } \quad \max _{\boldsymbol{x}} \frac{1}{2} \boldsymbol{x}^{T} \mathbf{Q} \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x} \quad \text { s.t. } \boldsymbol{x} \in \mathcal{X}
$$

where \mathcal{X} is a polyhedral set, and $\mathbf{Q} \succeq \mathbf{0}$.

- (\square) is equivalent to the following problem ${ }^{1}$

$$
(\triangle) \quad \max _{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}} \frac{1}{2} \boldsymbol{x}_{1}^{T} \mathbf{Q} \boldsymbol{x}_{2}+\frac{1}{2} \boldsymbol{c}^{T} \boldsymbol{x}_{1}+\frac{1}{2} \boldsymbol{c}^{T} \boldsymbol{x}_{2} \quad \text { s.t. }\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \in \mathcal{X} \times \mathcal{X}
$$

- When fixing either \boldsymbol{x}_{1} or \boldsymbol{x}_{2}, problem (\triangle) is an LP, thereby efficiently solvable.

[^0]
Applications - Nonnegative Matrix Factorization (NMF)

- NMF is concerned with the following problem [Lee-Seung]:

$$
\begin{equation*}
\min _{\mathbf{U} \in \mathbb{R}^{m \times k}, \mathbf{V} \in \mathbb{R}^{k \times n}}\|\mathbf{M}-\mathbf{U V}\|_{F}^{2} \quad \text { s.t. } \mathbf{U} \geq \mathbf{0}, \mathbf{V} \geq \mathbf{0} \tag{15}
\end{equation*}
$$

where $\mathbf{M} \geq \mathbf{0}$.

- Usually $k \ll \min (m, n)$ or $m k+n k \ll m n$, so NMF can be seen as a linear dimensionality reduction technique for nonnegative data.

NMF Examples

- Image Processing:
- $\mathbf{U} \geq \mathbf{0}$ constraints the basis elements to be nonnegative.
- $\mathbf{V} \geq \mathbf{0}$ imposes an additive reconstruction.

The basis elements extract facial features such as eyes, nose and lips.

- Text Mining

Sets of words found simultaneously in different texts

- Basis elements allow to recover different topics;
- Weights allow to assign each text to its corresponding topics.
- Hyperspectral Unmixing

- Basis elements U represent different materials;
- Weights V allow to know which pixel contains which material.
- Let's turn back to the NMF problem:

$$
\begin{equation*}
\min _{\mathbf{U} \in \mathbb{R}^{m \times k}, \mathbf{V} \in \mathbb{R}^{k \times n}}\|\mathbf{M}-\mathbf{U V}\|_{F}^{2} \quad \text { s.t. } \mathbf{U} \geq \mathbf{0}, \mathbf{V} \geq \mathbf{0} \tag{16}
\end{equation*}
$$

- Without " $\geq \mathbf{0}$ " constraints, the optimal \mathbf{U}^{\star} and \mathbf{V}^{\star} can be obtained by SVD.
- With " ≥ 0 " constraints, problem (16) is generally NP-hard.
- When fixing \mathbf{U} (resp. V), problem (16) is convex w.r.t. V (resp. U).
- For example, for a given \mathbf{U}, the i th column of \mathbf{V} is updated by solving the following NLS problem:

$$
\begin{equation*}
\min _{\mathbf{V}(:, i) \in \mathbb{R}^{k}}\|\mathbf{M}(:, i)-\mathbf{U V}(:, i)\|_{2}^{2}, \quad \text { s.t. } \mathbf{V}(:, i) \geq \mathbf{0} \tag{17}
\end{equation*}
$$

BCD Algorithm for NMF:

1: Initialize $\mathbf{U}=\mathbf{U}^{0}, \mathbf{V}=\mathbf{V}^{0}$ and $r=0$;
2: repeat
3: \quad solve the NLS problem

$$
\mathbf{V}^{\star} \in \arg \min _{\mathbf{V} \in \mathbb{R}^{k \times n}}\left\|\mathbf{M}-\mathbf{U}^{r} \mathbf{V}\right\|_{F}^{2}, \quad \text { s.t. } \mathbf{V} \geq \mathbf{0}
$$

4: $\quad \mathbf{V}^{r+1}=\mathbf{V}^{\star}$;
5: \quad solve the NLS problem

$$
\mathbf{U}^{\star} \in \arg \min _{\mathbf{U} \in \mathbb{R}^{m \times k}}\left\|\mathbf{M}-\mathbf{U V}^{r+1}\right\|_{F}^{2}, \quad \text { s.t. } \mathbf{U} \geq \mathbf{0}
$$

6: $\quad \mathbf{U}^{r+1}=\mathbf{U}^{\star}$;
$7: \quad r=r+1$;
8: until some convergence criterion is met

Outline

- Majorization Minimization (MM)
- Convergence
- Applications
- Block Coordinate Descent (BCD)
- Applications
- Convergence
- Summary

BCD Convergence

- The idea of $B C D$ is to divide and conquer. However, there is no free lunch; $B C D$ may get stuck or converge to some point of no interest.

Figure 6: BCD for smooth/non-smooth minimization.

BCD Convergence

$$
\begin{equation*}
\min _{\boldsymbol{x}} f(\boldsymbol{x}) \quad \text { s.t. } \boldsymbol{x} \in \mathcal{X}=\mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{m} \subseteq \mathbb{R}^{n} \tag{18}
\end{equation*}
$$

- A well-known BCD convergence result due to Bertsekas:

Theorem 2. ([Bertsekas]) Suppose that f is continuously differentiable over the convex closed set \mathcal{X}. Furthermore, suppose that for each i

$$
g_{i}(\boldsymbol{\xi}) \triangleq f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{i-1}, \boldsymbol{\xi}, \boldsymbol{x}_{i+1}, \ldots, \boldsymbol{x}_{m}\right)
$$

is strictly convex. Let $\left\{\boldsymbol{x}^{r}\right\}$ be the sequence generated by BCD method. Then every limit point of $\left\{\boldsymbol{x}^{r}\right\}$ is a stationary point of problem (18).

- If \mathcal{X} is (convex) compact, i.e., closed and bounded, then strict convexity of $g_{i}(\boldsymbol{\xi})$ can be relaxed to having a unique optimal solution.
- Application: Iterative water-filling for MIMO MAC sum capacity max.:
$(\triangle) \max _{\left\{\mathbf{Q}_{k}\right\}_{k=1}^{K}} \log \operatorname{det}\left(\sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Q}_{k} \mathbf{H}_{k}^{H}+\mathbf{I}\right), \quad$ s.t. $\operatorname{Tr}\left(\mathbf{Q}_{k}\right) \leq P_{k}, \mathbf{Q}_{k} \succeq \mathbf{0}, \forall k$
- Iterative water-filling converges to a global optimal solution of (\triangle), because
- BCD subproblem is strictly convex (assuming full column rankness of \mathbf{H}_{k});
- \mathcal{X}_{k} is a convex closed subset;
$-(\triangle)$ is a convex problem, so stationary point \Longrightarrow global optimal solution

Generalization of Bertsekas' Convergence Result

- Generalization 1: Relax Strict Convexity to Strict Quasiconvexity ${ }^{2}$ [Grippo-Sciandrone]

Theorem 3. Suppose that the function f is continuously differentiable and strictly quasiconvex with respect to \boldsymbol{x}_{i} on \mathcal{X}, for each $i=1, \ldots, m-2$ and that the sequence $\left\{\boldsymbol{x}^{r}\right\}$ generated by the BCD method has limit points. Then, every limit point is a stationary point of problem (18).

- Application: Low-Rank Matrix Completion

$$
(\triangle) \quad \min _{\mathbf{X}, \mathbf{Y}, \mathbf{Z}} \frac{1}{2}\|\mathbf{X Y}-\mathbf{Z}\|_{F}^{2} \quad \text { s.t. } Z_{i j}=M_{i j}, \forall(i, j) \in \boldsymbol{\Omega}
$$

- $m=3$ and (\triangle) is strictly convex w.r.t. $\mathbf{Z} \Longrightarrow B C D$ converges to a stationary point.

[^1]- Generalization 2: Without Solution Uniqueness

Theorem 4. Suppose that f is pseudoconvex ${ }^{3}$ on \mathcal{X} and that $\mathcal{L}_{\mathcal{X}}^{0}:=\{\boldsymbol{x} \in \mathcal{X}$: $\left.f(\boldsymbol{x}) \leq f\left(\boldsymbol{x}^{0}\right)\right\}$ is compact. Then, the sequence generated by $B C D$ method has limit points and every limit point is a global minimizer of f.

- Application: Iterative water-filling for MIMO-MAC sum capacity max.

$$
\begin{aligned}
& \max _{\left\{\mathbf{Q}_{k}\right\}_{k=1}^{K}} \log \operatorname{det}\left(\sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Q}_{k} \mathbf{H}_{k}^{H}+\mathbf{I}\right) \\
& \quad \text { s.t. } \operatorname{Tr}\left(\mathbf{Q}_{k}\right) \leq P_{k}, \mathbf{Q}_{k} \succeq \mathbf{0}, \quad k=1, \ldots, K
\end{aligned}
$$

- f is convex, thus pseudoconvex;
$-\left\{\mathbf{Q}_{k} \mid \operatorname{Tr}\left(\mathbf{Q}_{k}\right) \leq P_{k}, \mathbf{Q}_{k} \succeq \mathbf{0}\right\}$ is compact;
- iterative water-filling converges to a globally optimal solution.

[^2]- Generalization 3: Without Solution Uniqueness, Pseudoconvexity and Compactness

Theorem 5. Suppose that f is continuously differentiable, and that \mathcal{X} is convex and closed. Moreover, if there are only two blocks, i.e., $m=2$, then every limit point generated by $B C D$ is a stationary point of f.

- Application: NMF

$$
\min _{\mathbf{U} \in \mathbb{R}^{m \times k}, \mathbf{V} \in \mathbb{R}^{k \times n}}\|\mathbf{M}-\mathbf{U V}\|_{F}^{2} \quad \text { s.t. } \mathbf{U} \geq \mathbf{0}, \mathbf{V} \geq \mathbf{0}
$$

- Alternating NLS converges to a stationary point of the NMF problem, since
- the objective is continuously differentiable;
- the feasible set is convex and closed;
$-m=2$.

Summary

- MM and BCD have great potential in handling nonconvex problems and realizing fast/distributed implementations for large-scale convex problems;
- Many well-known algorithms can be interpreted as special cases of MM and BCD;
- Under some conditions, convergence to stationary point can be guaranteed by MM and BCD.

References

M. Razaviyayn, M. Hong, and Z.-Q. Luo, "A unified convergence analysis of block successive minimization methods for nonsmooth optimization," submitted to SIAM Journal on Optimization, available online at http://arxiv.org/abs/ 1209.2385.
L. Grippo and M. Sciandrone, "On the convergence of the block nonlinear GaussSeidel method under convex constraints," Operation research letter vol. 26, pp. 127-136, 2000
E. J. Candes, M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted ℓ_{1} minimization," J. Fourier Anal. Appl., 14 (2008), pp. 877-905.
M. Zibulevsky and M. Elad, " $\ell_{1}-\ell_{2}$ optimization in signal and image processing," IEEE Signal Process. Magazine, May 2010, pp.76-88.
D. P. Bertsekas, "Nonlinear Programming," Athena Scientific, 1st Ed., 1995
W. Yu and J. M. Cioffi, "Sum capacity of a Gaussian vector broadcast channel", IEEE Trans. Inf. Theory, vol. 50, no. 1, pp. 145-152, Jan. 2004
Z. Wen, W. Yin, and Y. Zhang, "Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm," Rice CAAM Tech Report 10-07.

Daniel D. Lee and H. Sebastian Seung, "Algorithms for Non-negative Matrix Factorization". Advances in Neural Information Processing Systems 13: Proceedings of the 2000 Conference. MIT Press. pp. 556-562, 2001.

[^0]: ${ }^{1}$ The equivalence is in the following sense: If \boldsymbol{x}^{\star} is an optimal solution of (\square), then $\left(\boldsymbol{x}^{\star}, \boldsymbol{x}^{\star}\right)$ is optimal for (\triangle); Conversely, if $\left(\boldsymbol{x}_{1}^{\star}, \boldsymbol{x}_{2}^{\star}\right)$ is an optimal solution of (\triangle), then both $\boldsymbol{x}_{1}^{\star}, \boldsymbol{x}_{2}^{\star}$ are optimal for (\square).

[^1]: ${ }^{2} f$ is strictly quasiconvex w.r.t. $\boldsymbol{x}_{i} \in \mathcal{X}$ on \mathcal{X} if for every $\boldsymbol{x} \in \mathcal{X}$ and $\boldsymbol{y}_{i} \in \mathcal{X} \mathcal{X}_{i}$ with $\boldsymbol{y}_{i} \neq \boldsymbol{x}_{i}$ we have $f\left(\boldsymbol{x}_{1}, \ldots, t \boldsymbol{x}_{i}+(1-t) \boldsymbol{y}_{i}, \ldots, \boldsymbol{x}_{m}\right)<\max \left\{f(\boldsymbol{x}), f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{y}_{i}, \ldots, \boldsymbol{x}_{m}\right)\right\}, \forall t \in(0,1)$.

[^2]: ${ }^{3} f$ is pseudoconvex if for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{X}$ such that $\nabla f(\boldsymbol{x})^{T}(\boldsymbol{y}-\boldsymbol{x}) \geq 0$, we have $f(\boldsymbol{y}) \geq f(\boldsymbol{x})$. Notice that "convex \subset pseudoconvex \subset quasiconvex".

