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Majorization Minimization

Consider the following problem

min f(x) st.x e X

1

where X is a closed convex set; f(-) may be non-convex and/or nonsmooth.

e Challenge: For a general f(-), problem (1) can be difficult to solve.

e Majorization Minimization: lteratively generate {x"} as follows

r” € minu(z, ") st.xeX
T

where u(x, 2" 1) is a surrogate function of f(x), satisfying

(1)

(2)




Figure 1: An pictorial illustration of MM algorithm.

Property 1. {f(x")} is nonincreasing, i.e., f(z") < f(xz"1), Vr=1,2,....
Proof. f(x") <wu(z",z" 1) <wu(zx" Yzl = f(z" ) H

e The nonincreasing property of {f(z")} implies that f(x") — f. But how about
the convergence of the iterates {x"}?




Technical Preliminaries

e Limit point: 7 is a limit point of {x}} if there exists a subsequence of {x} that
converges to Z. Note that every bounded sequence in R™ has a limit point (or
convergent subsequence);

e Directional derivative: Let f : D — R be a function where D C R™ is a convex
set. The directional derivative of f at point = in direction d is defined by
flx+ Ad) — f(x)

NN
f(x;d) = hrilonf )\

— If f is differentiable, then f'(x;d) = d''V f(x).
e Stationary point: « € X is a stationary point of f(-) if
f'(x;d) >0, Vd such that x + d € D. (3)

— A stationary point may be a local min., a local max. or a saddle point;
— If D =R" and f is differentiable, then (3) <= V f(x) = 0.




Convergence of MM

e Assumption 1 u(-,-) satisfies the following conditions

(u(y,y) = f(y), Yyedk,
u(z,y) > f(x), Ve,yeX,
u'(z,Y; d)|le=y= f'(y;d), Vdwithy+dec X,

| u(x,y) is continuous in (x,y),

e (4c) means the 1st order local behavior of u(-,z"1) is the same as f(-).




Convergence of MM

Theorem 1. [Razaviyayn-Hong-Luo] Assume that Assumption 1 is satisfied. Then

every limit point of the iterates generated by MM algorithm is a stationary point of
problem (1).

Proof. From Property 1, we know that f(z" ™) < u(z™! z") < u(z,z"), Vx €
X. Now assume that there exists a subsequence {x"7} of {x"} converging to a limit
point z, i.e,, lim;_,®"7 = 2. Then

u(xH, gl = fal) < faH) <u(eta) <u(z,a), Voe X.
Letting j — 0o, we obtain u(z,2) < wu(x,z), Va € X, which implies that
u(x,z;d)|pg=2 >0, Vz+delX.

Combining the above inequality with (4c) (ie, U'(x,y;d)lz=y =
f'(y;d), Vd withy+d e X), we have

f(z;d) >0, Vz+deX.




Applications — Nonnegative Least Squares

In many engineering applications, we encounter the following problem

(NLS) min [[Ax — b||5 (5)

x>0
where b € R, b # 0, and A € RT"F"™.

e It's an LS problem with nonnegative constraints, so the conventional LS solution
may not be feasible for (5).

e A simple multiplicative updating algorithm:

ro r T __ [ATb]l
where x; is the Ith component of ", and ¢} = AT Az 1],

e Starting with ° > 0, then all =" generated by (6) are nonnegative.
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Figure 2: ||Ax" — b||2 vs. the number of iterations.

e Usually the multiplicative update converges within a few tens of iterations.




e MM interpretation: Let f(x) £ ||[Az — b||3. The multiplicative update

essentially solves the following problem

: r—1
min u(x, ")

where

u(@,2™") 2 @) + (@ — &) Vi@ ) + 5@ -2 ) (@) (2 — 2,

2
ATA r—1 ATA r—ln
<I>(:c"“_1):Diag<[ ﬁl ]1,...,[ Ta_el | > :
Iy Ln

— QObservations:

w(x, z"~1) is quadratic approx. of f(x), w(xz, 2" 1) > f(x), YV € R",
—
(I)(mr—l) t ATA, u(wr—l’wr—l) — f(CUT_l).

e The multiplicative update converges to an optimal solution of NLS (by the MM
convergence in Theorem 1 and convexity of NLS).




Applications — Convex-Concave Procedure/ DC Programming

e Suppose that f(x) has the following form

where g(x) and h(x) are convex and differentiable. Thus, f(x) is in general
nonconvex.

e DC Programming: Construct u(-,-) as

u(x,x") = g(x) — gh(wr) + Vaoh(z") ! (z — :BT))J

VO
linearization of h at x"

e By the 1st order condition of h(x), it's easy to show that

u(@, ") = f(x), ve e X, u(x’,z") = f(z").
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e Sparse Signal Recovery by DC Programming

min ||z|lp s.t.y=Ax (7)

— Apart from the popular ¢; approximation, consider the following concave
approximation:

a{ré}R%;log(l + |xil/€) s.t.y = Ax,

1.5
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Figure 3: log(1 + |z|/€) promotes more sparsity than ¢,
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in > log(1 + |z t.y = Az,
i%%;og( +|zil/e) st.oy=Awm

which can be equivalently written as

mrgé%n ;log(zi +¢€) st.y=Ax, |[v;| <z, i=1,....n (8)

— Problem (8) minimizes a concave objective, so it's a special case of DC
programming (g(x) = 0). Linearizing the concave function at (x", 2") yields

mn

(", 2" ) = argmin g : st.y=Ax, |x;| <z, i=1,...,n
— z; t¢
1=

— We solve a sequence of reweighted ¢; problems.
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Fig. 2 Sparse signal recovery through reweighted ¢; iterations. (a) Original length n = 512 signal x(

with 130 spikes. (b) Scatter plot, coefficient-by-coefficient, of xq versus its reconstruction x

(©)

using un-

weighted ¢{ minimization. (¢) Reconstruction xD after the first reweighted iteration. (d) Reconstruction

x @) after the second reweighted iteration
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Applications — /5 — /,, Optimization

e Many problems involve solving the following problem (e.g., basis-pursuit denoising)

, 1
min f(z) 2 |ly - Azl3+ e, 9)

where p > 1.
e If A=1or A is unitary, optimal x

z* = ATy — Projo(ATy)

*is computed in closed-form as

where C = {x : |||« < i}, || - ||« is the dual norm of || - ||, and Proj. denotes
the projection operator. In particular, for p =1

x; =soft(y;, 1), i=1,...,n

where soft(u, a) = sign(u) max{|u| —a, 0} denotes a soft-thresholding operation.

e For general A, there is no simple closed-form solution for (9).
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e MM for ¢/, — ¢/, Problem: Consider a modified {5 — ¢, problem

min u(z,z") £ f(x) + dist(x, z") (10)

€T

where dist(z, ") £ £|le — 2"||3 — 1||Az — Ax"[]3 and ¢ > Anax(ATA).

— dist(x, ") > 0 V& = u(x, ") majorizes f(x).
— u(ax,x"”) can be reexpressed as

C
u(@,@") = Sllz — 2"l + pl@||, + const.,

where |
' =-Al(y— Ax") +x".
c
— The modified ¢5 — ¢,, problem (10) has a simple soft-thresholding solution.
— Repeatedly solving problem (10) leads to an optimal solution of the ¢y — ¢,

problem (by the MM convergence in Theorem 1 )
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Applications — Expectation Maximization (EM)

e Consider an ML estimate of 6, given the random observation w

Onir, = arg m@in — In p(w|0)

e Suppose that there are some missing data or hidden variables z in the model.
Then, EM algorithm iteratively compute an ML estimate 6 as follows:

— E-step:
9(6,0") £ E.jw,or{Inp(w, 2|0)}

— M-step:

0"t = arg max g(6,0")

— repeat the above two steps until convergence.
e EM algorithm generates a nonincreasing sequence of {— Inp(w|0")}.

e EM algorithm can be interpreted by MM.
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e MM interpretation of EM algorithm:
— Inp(w|6)
— = 1nEz|9p(w|z7 0)
p(z|lw, 6")p(w|z,0)

= — In Ez|9

p(z|w, 07)
Sy .
= —InE,|, 0 p(z|0)p(w]z, 0) (interchange the integrations)
- p(zlw,67)
(1 e
< —E,jy,orIn pzl0)p(wlz, ) (Jensen’s inequality)
p(z|w, 67)
= — EzIw,W 1np(w, z‘@) + IEz|w,07“ lnp(z|w, QT) (113)
2u(0,0")

— u(0,0") majorizes —Inp(wl|f), and —Inp(w|0") = u(6",0");
— E-step essentially constructs u(6,0");
— M-step minimizes u(6,60") (note 6 appears in the 1st term of (11a) only).
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Block Coordinate Descent
e Consider the following problem

min f(x) st.x e X=X x X x...x X, CR" (12)

1

where each X; C R™ is closed, nonempty and convex.
e BCD Algorithm:

1. Find a feasible point £ € X and set » =0

2: repeat

3 r=r+1,i=(r—1modm)+1

a: Let 7 € argmingcx, f(a:q_l, e ,:13;7__11, x, :13;:11, el
5 Set 7 = x¥ and x = x| ', Vk #i

6: until some convergence criterion is met

e Merits of BCD

1. each subproblem is much easier to solve, or even has a closed-form solution;
2. The objective value is nonincreasing along the BCD updates;
3. it allows parallel or distributed implementations.
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Applications — /5 — /; Optimization Problem

e Let us revisit the 5 — /1 problem

1
. A 2
2 |y — Ax|5 + pl|lx
min f(x) 2Hy Ik |1

e Apart from MM, BCD is another efficient approach to solve (13):

— Optimize z while fixing z; = x’;, Vj # k:

. 1 .
min fi(zs) - Sy~ > axi —apry|3 + plal
j#k

A —
=Y

\ . 4

— The optimal xj has a closed form:
i = soft (apg/llax]®, 1/l arl?)

— Cyclically update x, £ =1,...,n until convergence.

(13)
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Applications — lterative Water-filling for MIMO MAC Sum
Capacity Maximization
e MIMO Channel Capacity Maximization
— MIMO received signal model:

y(t) = Ha(t) + n(t)

where
x(t) € CN  Txsignal
H ¢ CV*¥  MIMO channel matrix
n(t) € CV  standard additive Gaussian noise, i.e., n(t) ~ CN(0,1).

.av(t)_V y(t)

o)) G5 T

'Y

Figure 4: MIMO system model.




— MIMO channel capacity:
C(Q) = logdet (I + HQH")

where Q = E{x(t)z(t)"} is the covariance of the tx signal.
— MIMO channel capacity maximization:

H
T. <
max log det (I+HQH") st Tr(Q) <P

where P > 0 is the transmit power budget.
— The optimal Q* is given by the well-known water-filling solution, i.e.,

Q* = VDiag(p*) V"
where H = UDiag(oy,...,o0n)V# is the SVD of H, and p* = [p,...,pY]

is the power allocation with p¥ = max(0,u — 1/0?) and pu > 0 being the
water-level such that > . pF = P.
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e MIMO Multiple-Access Channel (MAC) Sum-Capacity Maximization

— Multiple transmitters simultaneously communicate with one receiver:

Qﬁl(t) — H,|

JSK(t)—) HK

Figure 5: MIMO multiple-access channel (MAC).

— Received signal model:

y(t) = Sy Hewi(t) + n(t)

— MAC sum capacity:

Crac({Qr}izi) = logdet (25:1 H,Q H; + I)

23



— MAC sum capacity maximization:

max logdet (Zle H,Q.H! + I)
{ka}é{zl

S.t. Tr(Qk) SP}C, Qk EO, k’Zl,,K

(14)

— Problem (14) is convex w.r.t. {Qx}, but it has no simple closed-form solution.
— Alternatively, we can apply BCD to (14) and cyclically update Qj while fixing

Q; for j #Fk
(A) max log det (H,Q,H; + @)
k
s.t. Tr(Qg) < Pr, Qi =0,

where @ = ., H;Q;H} +1
— (A) has a closed-form water-filling solution, just like the previous single-user
MIMO case.
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Applications — Low-Rank Matrix Completion

e In a previous lecture, we have introduced the low-rank matrix completion problem,
which has huge potential in sales recommendation.

e For example, we would like to predict how much someone is going to like a movie
based on its movie preferences:

movies
2 3 1 7 ?2 5 5
1 7 4 77 7
M=17 3 1 7 2 2 2| users
77 7T 3 7 1 5
_2 74 7 7 5 3_

e M is assumed to be of low rank, as only a few factors affect users’ preferences.

Wi
min MH S.t” Wij = Mij, \V/(Z,]) e 0

WeRan
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e An alternative low-rank matrix completion formulation [Wen-Yin-Zhang]:

(A) )gnﬁlfnz —HXY ZHF S.t. Zij — M’ij) V(Z,]) e )

where X € RMXL y ¢ REXN 7 c RMXN 3nd L is an estimate of min. rank.

e Advantage of adopting (A): When BCD is applied, each subproblem of (/) has
a closed-form solution:

Xr—l—l _ ZTYT‘T(YTYTT)T7
YT‘—|—1 (XT+1TX7“—|—1) (XT—FszT),

gty XY for (i)
"J M@j, for ( 1,] ) = Q)
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Applications — Maximizing A Convex Quadratic Function

e Consider maximizing a convex quadratic problem:

1
() max iaf;TQw +clx st.xeX

where X is a polyhedral set, and Q > O.

e (0) is equivalent to the following problem?

1 1 1
(A) max im?QiBg + §CTw1 + §CTw2 s.t. (x1,x2) € X X X

e When fixing either x; or x5, problem (A) is an LP, thereby efficiently solvable.

1The equivalence is in the following sense: If @* is an optimal solution of (00), then (x*, *) is optimal for (A);
Conversely, if (&, ®3) is an optimal solution of (A), then both @7, @5 are optimal for (OJ).
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Applications — Nonnegative Matrix Factorization (NMF)

e NMF is concerned with the following problem [Lee-Seung]:

min IM—-UV|7 st.U>0, V>0 (15)
UERka,VGRkX”

where M > 0.

e Usually & < min(m,n) or mk + nk < mn, so NMF can be seen as a linear
dimensionality reduction technique for nonnegative data.

71 7 e
i NNNNNNNRNNNRRRNNN
ANNNAN NNNNNNN
X
1 \Y
LA b KA
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NMF Examples

e Image Processing:

— U > 0 constraints the basis elements to be nonnegative.
— V > 0 imposes an additive reconstruction.

Original

NMF

I I I I I |

] Ao I I
b A = L L

I ] ] 1 ;1 1

[ T A B T -
ST 7 R ol il R b,

TTI =17 1 =TT I'II

| hod 1
-ﬁi— ——1——n—— ——r——*
[ [ [ 1

—1 1# W 1 1 %

o o e e o e e e e e e o

= = [ [ [ [ =
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[ = =1 &l ™= | x
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b i o e e e e
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1wl [ [ [ | -
1 1

The basis elements extract facial features such as eyes, nose and lips.




e Text Mining

/

Ch

Weigths to reconstruct

each text
Sets of words found simultaneously in ditferent texts

|
Dictionary
U

— Basis elements allow to recover different topics;
— Weights allow to assign each text to its corresponding topics.
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e Hyperspectral Unmixing

— Basis elements U represent different materials;
— Weights V allow to know which pixel contains which material.
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Let's turn back to the NMF problem:

min

IM - UV||%

UeRka,VGRan

st. U>0, V>0

(16)

Without “> 0" constraints, the optimal U* and V* can be obtained by SVD.

With “> 0" constraints, problem (16) is generally NP-hard.

When fixing U (resp. V), problem (16) is convex w.r.t. 'V (resp. U).

For example, for a given U, the 7th column of V is updated by solving the

following NLS problem:

min
V(:,i)ERF

IM(:,7) — UV (5, )3,

s.t. V(:,7) >0,

(17)
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BCD Algorithm for NMF:
1. Initialize U=U°% V=V9%and r = 0:
2: repeat
3: solve the NLS problem

V* carg min |[|[M—U"V|3,
VEeREXn

4 AVAREIE Vol
5: solve the NLS problem

U* carg min |[M - UV,
UcRmXk

6: Ur—i_l = U*'
7 r=r+41;
8: until some convergence criterion is met

st. V>0

s.t. U>0
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BCD Convergence

e The idea of BCD is to divide and conquer. However, there is no free lunch; BCD
may get stuck or converge to some point of no interest.

Figure 6: BCD for smooth/non-smooth minimization.
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BCD Convergence

min f(x) st.x e X=X x X x...x X, CR" (18)

T

e A well-known BCD convergence result due to Bertsekas:

Theorem 2. ([Bertsekas]) Suppose that f is continuously differentiable over the
convex closed set X. Furthermore, suppose that for each i

gZ(é) = f(wla'm?a R 7wi—17€7wi+17 R ,.’L‘m)

is strictly convex. Let {x"} be the sequence generated by BCD method. Then
every limit point of {x"} is a stationary point of problem (18).

e If X is (convex) compact, i.e., closed and bounded, then strict convexity of g;(&)
can be relaxed to having a unique optimal solution.
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e Application: lterative water-filling for MIMO MAC sum capacity max.:

(A) D logdet (3, HyQuHZ + 1), s.t. Tr(Qx) < P, Qi =0, Vk
kJ k=1

e |terative water-filling converges to a global optimal solution of (A\), because

— BCD subproblem is strictly convex (assuming full column rankness of Hy);

— X% is a convex closed subset;
— (A\) is a convex problem, so stationary point => global optimal solution
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Generalization of Bertsekas’ Convergence Result

e Generalization 1: Relax Strict Convexity to Strict Quasiconvexity? [Grippo-Sciandrone]

Theorem 3. Suppose that the function f is continuously differentiable and
strictly quasiconvex with respect to x; on X, for eacht=1,...,m — 2 and that
the sequence {x"} generated by the BCD method has limit points. Then, every
limit point is a stationary point of problem (18).

e Application: Low-Rank Matrix Completion

1
(&) min §|\XY—ZH% s.t. Zi; = My, V(i,j) € Q

— m =3 and (A) is strictly convex w.r.t. Z = BCD converges to a stationary
point.

2f is strictly quasiconvex w.r.t. ®; € X; on X if for every x € X and y; € X; with y; # x; we have

flx1,...,te; + (L — )y, ..., &m) < max{f(x), f(®1,.-.-,Yij,---,&m)}, YVt € (0, 1).
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e Generalization 2: Without Solution Uniqueness

Theorem 4. Suppose that f is pseudoconvex’ on X and that LS, := {x € X :
f(x) < f(x®)} is compact. Then, the sequence generated by BCD method has
limit points and every limit point is a global minimizer of f.

e Application: lterative water-filling for MIMO-MAC sum capacity max.

max logdet ZK: H,.Q,HY +1
(o (2 §+T)

S.t. TI’(Qk) SPk, Qk EO, k= 1,...,K

— f is convex, thus pseudoconvex;

— {Qk | Tr(Qx) < Px, Qi = 0} is compact;
— iterative water-filling converges to a globally optimal solution.

3f is pseudoconvex if for all @,y € X such that Vf(x)? (y — &) > 0, we have f(y) > f(x). Notice that
“convex C pseudoconvex C quasiconvex' .
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e Generalization 3: Without Solution Uniqueness, Pseudoconvexity and Compactness

Theorem 5. Suppose that f is continuously differentiable, and that X is convex
and closed. Moreover, if there are only two blocks, i.e., m = 2, then every limit
point generated by BCD is a stationary point of f.

e Application: NMF

min IM—-UV|% st.U>0, V>0
UERka,VERkX”

e Alternating NLS converges to a stationary point of the NMF problem, since

— the objective is continuously differentiable;
— the feasible set is convex and closed:
- m = 2.
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Summary

e MM and BCD have great potential in handling nonconvex problems and realizing
fast/distributed implementations for large-scale convex problems;

e Many well-known algorithms can be interpreted as special cases of MM and BCD;

e Under some conditions, convergence to stationary point can be guaranteed by
MM and BCD.
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