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Majorization Minimization

Consider the following problem

min
x
f(x) s.t. x ∈ X (1)

where X is a closed convex set; f(·) may be non-convex and/or nonsmooth.

• Challenge: For a general f(·), problem (1) can be difficult to solve.

• Majorization Minimization: Iteratively generate {xr} as follows

xr ∈ min
x
u(x,xr−1) s.t. x ∈ X (2)

where u(x,xr−1) is a surrogate function of f(x), satisfying

1. u(x,xr) ≥ f(x), ∀xr,x ∈ X ;
2. u(xr,xr) = f(xr);
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Figure 1: An pictorial illustration of MM algorithm.

Property 1. {f(xr)} is nonincreasing, i.e., f(xr) ≤ f(xr−1), ∀r = 1, 2, . . ..

Proof. f(xr) ≤ u(xr,xr−1) ≤ u(xr−1,xr−1) = f(xr−1) �

• The nonincreasing property of {f(xr)} implies that f(xr) → f̄ . But how about
the convergence of the iterates {xr}?
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Technical Preliminaries
• Limit point: x̄ is a limit point of {xk} if there exists a subsequence of {xk} that

converges to x̄. Note that every bounded sequence in Rn has a limit point (or
convergent subsequence);

• Directional derivative: Let f : D → R be a function where D ⊆ Rm is a convex
set. The directional derivative of f at point x in direction d is defined by

f ′(x;d) , lim inf
λ↓0

f(x+ λd)− f(x)

λ
.

– If f is differentiable, then f ′(x;d) = dT∇f(x).

• Stationary point: x ∈ X is a stationary point of f(·) if

f ′(x;d) ≥ 0, ∀d such that x+ d ∈ D. (3)

– A stationary point may be a local min., a local max. or a saddle point;
– If D = Rn and f is differentiable, then (3)⇐⇒ ∇f(x) = 0.
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Convergence of MM

• Assumption 1 u(·, ·) satisfies the following conditions
u(y,y) = f(y), ∀y ∈ X , (4a)

u(x,y) ≥ f(x), ∀x,y ∈ X , (4b)

u′(x,y;d)|x=y= f ′(y;d), ∀d with y + d ∈ X , (4c)

u(x,y) is continuous in (x,y), (4d)

• (4c) means the 1st order local behavior of u(·,xr−1) is the same as f(·).
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Convergence of MM
Theorem 1. [Razaviyayn-Hong-Luo] Assume that Assumption 1 is satisfied. Then
every limit point of the iterates generated by MM algorithm is a stationary point of
problem (1).

Proof. From Property 1, we know that f(xr+1) ≤ u(xr+1,xr) ≤ u(x,xr), ∀x ∈
X . Now assume that there exists a subsequence {xrj} of {xr} converging to a limit
point z, i.e., limj→∞x

rj = z. Then

u(xrj+1,xrj+1) = f(xrj+1) ≤ f(xrj+1) ≤ u(xrj+1,xrj) ≤ u(x,xrj), ∀x ∈ X .

Letting j →∞, we obtain u(z, z) ≤ u(x, z), ∀x ∈ X , which implies that

u′(x, z;d)|x=z ≥ 0, ∀z + d ∈ X .

Combining the above inequality with (4c) (i.e., u′(x,y;d)|x=y =
f ′(y;d), ∀d with y + d ∈ X ), we have

f ′(z;d) ≥ 0, ∀z + d ∈ X .
�
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Applications — Nonnegative Least Squares

In many engineering applications, we encounter the following problem

(NLS) min
x≥0

‖Ax− b‖22 (5)

where b ∈ Rm+ , b 6= 0, and A ∈ Rm×n++ .

• It’s an LS problem with nonnegative constraints, so the conventional LS solution
may not be feasible for (5).

• A simple multiplicative updating algorithm:

xrl = crlx
r−1
l , l = 1, . . . , n (6)

where xrl is the lth component of xr, and crl = [ATb]l
[ATAxr−1]l

.

• Starting with x0 > 0, then all xr generated by (6) are nonnegative.
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Figure 2: ‖Axr − b‖2 vs. the number of iterations.

• Usually the multiplicative update converges within a few tens of iterations.
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• MM interpretation: Let f(x) , ‖Ax − b‖22. The multiplicative update
essentially solves the following problem

min
x≥0

u(x,xr−1)

where

u(x,xr−1) , f(xr−1) + (x− xr−1)T∇f(xr−1) +
1

2
(x− xr−1)TΦ(xr−1)(x− xr−1),

Φ(xr−1) = Diag

(
[ATAxr−1]1

xr−1
1

, . . . ,
[ATAxr−1]n

xr−1
n

)
.

– Observations:{
u(x,xr−1) is quadratic approx. of f(x),

Φ(xr−1) � ATA,
=⇒

{
u(x,xr−1) ≥ f(x), ∀x ∈ Rn,
u(xr−1,xr−1) = f(xr−1).

• The multiplicative update converges to an optimal solution of NLS (by the MM
convergence in Theorem 1 and convexity of NLS).
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Applications — Convex-Concave Procedure/ DC Programming

• Suppose that f(x) has the following form

f(x) = g(x)− h(x),

where g(x) and h(x) are convex and differentiable. Thus, f(x) is in general
nonconvex.

• DC Programming: Construct u(·, ·) as

u(x,xr) = g(x)−
(
h(xr) +∇xh(xr)T (x− xr)

)︸ ︷︷ ︸
linearization of h at xr

• By the 1st order condition of h(x), it’s easy to show that

u(x,xr) ≥ f(x), ∀x ∈ X , u(xr,xr) = f(xr).
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• Sparse Signal Recovery by DC Programming

min
x
‖x‖0 s.t. y = Ax (7)

– Apart from the popular `1 approximation, consider the following concave
approximation:

min
x∈Rn

n∑
i=1

log(1 + |xi|/ε) s.t. y = Ax,
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Figure 3: log(1 + |x|/ε) promotes more sparsity than `1
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min
x∈Rn

n∑
i=1

log(1 + |xi|/ε) s.t. y = Ax,

which can be equivalently written as

min
x,z∈Rn

n∑
i=1

log(zi + ε) s.t. y = Ax, |xi| ≤ zi, i = 1, . . . , n (8)

– Problem (8) minimizes a concave objective, so it’s a special case of DC
programming (g(x) = 0). Linearizing the concave function at (xr, zr) yields

(xr+1, zr+1) = arg min

n∑
i=1

zi
zri + ε

s.t. y = Ax, |xi| ≤ zi, i = 1, . . . , n

– We solve a sequence of reweighted `1 problems.
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Fig. 2 Sparse signal recovery through reweighted �1 iterations. (a) Original length n = 512 signal x0
with 130 spikes. (b) Scatter plot, coefficient-by-coefficient, of x0 versus its reconstruction x(0) using un-
weighted �1 minimization. (c) Reconstruction x(1) after the first reweighted iteration. (d) Reconstruction
x(2) after the second reweighted iteration

‖x − x(1)‖�∞ = 0.2407, ‖x(1)‖�0 = 256 = m, 6 nonzero spikes in x0 reconstructed as
zeros and 132 zeros in x0 reconstructed as nonzeros. This improved signal estimate is
then sufficient to allow perfect recovery in the second reweighted iteration (Fig. 2(d)).

2.3 Analytical Justification

The iterative reweighted algorithm falls in the general class of Majorization-
Minimization (MM) algorithms, see [36] and references therein. In a nutshell, MM
algorithms are more general than EM algorithms, and work by iteratively minimizing
a simple surrogate function majorizing a given objective function. To establish this
connection, consider the problem

min
x∈Rn

n∑

i=1

log(|xi | + ε) subject to y = �x, (8)
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Applications — `2 − `p Optimization

• Many problems involve solving the following problem (e.g., basis-pursuit denoising)

min
x

f(x) ,
1

2
‖y −Ax‖22 + µ‖x‖p (9)

where p ≥ 1.
• If A = I or A is unitary, optimal x? is computed in closed-form as

x? = ATy − ProjC(ATy)

where C , {x : ‖x‖p∗ ≤ µ}, ‖ · ‖p∗ is the dual norm of ‖ · ‖p and ProjC denotes
the projection operator. In particular, for p = 1

x?i = soft(yi, µ), i = 1, . . . , n

where soft(u, a) , sign(u) max{|u|−a, 0} denotes a soft-thresholding operation.

• For general A, there is no simple closed-form solution for (9).
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• MM for `2 − `p Problem: Consider a modified `2 − `p problem

min
x

u(x,xr) , f(x) + dist(x,xr) (10)

where dist(x,xr) , c
2‖x− xr‖22 − 1

2‖Ax−Axr‖22 and c > λmax(ATA).

– dist(x,xr) ≥ 0 ∀x =⇒ u(x,xr) majorizes f(x).
– u(x,xr) can be reexpressed as

u(x,xr) =
c

2
‖x− x̄r‖22 + µ‖x‖p + const.,

where

x̄r =
1

c
AT (y −Axr) + xr.

– The modified `2 − `p problem (10) has a simple soft-thresholding solution.
– Repeatedly solving problem (10) leads to an optimal solution of the `2 − `p

problem (by the MM convergence in Theorem 1 )
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Applications — Expectation Maximization (EM)

• Consider an ML estimate of θ, given the random observation w

θ̂ML = arg min
θ
− ln p(w|θ)

• Suppose that there are some missing data or hidden variables z in the model.
Then, EM algorithm iteratively compute an ML estimate θ̂ as follows:

– E-step:
g(θ, θr) , Ez|w,θr{ln p(w, z|θ)}

– M-step:
θr+1 = arg max

θ
g(θ, θr)

– repeat the above two steps until convergence.

• EM algorithm generates a nonincreasing sequence of {− ln p(w|θr)}.

• EM algorithm can be interpreted by MM.
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• MM interpretation of EM algorithm:

− ln p(w|θ)
=− lnEz|θp(w|z, θ)

=− lnEz|θ
[
p(z|w, θr)p(w|z, θ)

p(z|w, θr)

]
=− lnEz|w,θr

[
p(z|θ)p(w|z, θ)
p(z|w, θr)

]
(interchange the integrations)

≤− Ez|w,θr ln

[
p(z|θ)p(w|z, θ)
p(z|w, θr)

]
(Jensen′s inequality)

=− Ez|w,θr ln p(w, z|θ) + Ez|w,θr ln p(z|w, θr) (11a)

,u(θ, θr)

– u(θ, θr) majorizes − ln p(w|θ), and − ln p(w|θr) = u(θr, θr);
– E-step essentially constructs u(θ, θr);
– M-step minimizes u(θ, θr) (note θ appears in the 1st term of (11a) only).
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Block Coordinate Descent
• Consider the following problem

min
x

f(x) s.t. x ∈ X = X1 ×X2 × . . .×Xm ⊆ Rn (12)

where each Xi ⊆ Rni is closed, nonempty and convex.

• BCD Algorithm:

1: Find a feasible point x0 ∈ X and set r = 0
2: repeat
3: r = r + 1, i = (r − 1 mod m) + 1
4: Let x?i ∈ arg minx∈Xi f(xr−1

1 , . . . ,xr−1
i−1 ,x,x

r−1
i+1 , . . . ,x

r−1
m )

5: Set xri = x?i and xrk = xr−1
k , ∀k 6= i

6: until some convergence criterion is met

• Merits of BCD

1. each subproblem is much easier to solve, or even has a closed-form solution;
2. The objective value is nonincreasing along the BCD updates;
3. it allows parallel or distributed implementations.
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Applications — `2 − `1 Optimization Problem

• Let us revisit the `2 − `1 problem

min
x∈Rn

f(x) ,
1

2
‖y −Ax‖22 + µ‖x‖1 (13)

• Apart from MM, BCD is another efficient approach to solve (13):

– Optimize xk while fixing xj = xrj , ∀j 6= k:

min
xk

fk(xk) ,
1

2
‖y −

∑
j 6=k

ajx
r
j︸ ︷︷ ︸

,ȳ

−akxk‖22 + µ|xk|

– The optimal xk has a closed form:

x?k = soft
(
aTk ȳ/‖ak‖2, µ/‖ak‖2

)
– Cyclically update xk, k = 1, . . . , n until convergence.
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Applications — Iterative Water-filling for MIMO MAC Sum
Capacity Maximization

• MIMO Channel Capacity Maximization

– MIMO received signal model:

y(t) = Hx(t) + n(t)

where

x(t) ∈ CN Tx signal
H ∈ CN×N MIMO channel matrix
n(t) ∈ CN standard additive Gaussian noise, i.e., n(t) ∼ CN (0, I).

Tx Rx

Figure 4: MIMO system model.
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– MIMO channel capacity:

C(Q) = log det
(
I + HQHH

)
where Q = E{x(t)x(t)H} is the covariance of the tx signal.

– MIMO channel capacity maximization:

max
Q�0

log det
(
I + HQHH

)
s.t. Tr(Q) ≤ P

where P > 0 is the transmit power budget.
– The optimal Q? is given by the well-known water-filling solution, i.e.,

Q? = VDiag(p?)VH

where H = UDiag(σ1, . . . , σN)VH is the SVD of H, and p? = [p?1, . . . , p
?
N ]

is the power allocation with p?i = max(0, µ − 1/σ2
i ) and µ ≥ 0 being the

water-level such that
∑
i p
?
i = P .
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• MIMO Multiple-Access Channel (MAC) Sum-Capacity Maximization

– Multiple transmitters simultaneously communicate with one receiver:

¢
¢
¢

HK

H1

  

n(t)x1(t)

xK(t)

y(t)

¢
¢
¢

Figure 5: MIMO multiple-access channel (MAC).

– Received signal model:

y(t) =
∑K
k=1 Hkxk(t) + n(t)

– MAC sum capacity:

CMAC({Qk}Kk=1) = log det
(∑K

k=1 HkQkH
H
k + I

)
23



– MAC sum capacity maximization:

max
{Qk}Kk=1

log det
(∑K

k=1 HkQkH
H
k + I

)
s.t. Tr(Qk) ≤ Pk, Qk � 0, k = 1, . . . ,K

(14)

– Problem (14) is convex w.r.t. {Qk}, but it has no simple closed-form solution.
– Alternatively, we can apply BCD to (14) and cyclically update Qk while fixing

Qj for j 6= k

(4) max
Qk

log det
(
HkQkH

H
k + Φ

)
s.t. Tr(Qk) ≤ Pk, Qk � 0,

where Φ =
∑
j 6=kHjQjH

H
j + I

– (4) has a closed-form water-filling solution, just like the previous single-user
MIMO case.
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Applications — Low-Rank Matrix Completion

• In a previous lecture, we have introduced the low-rank matrix completion problem,
which has huge potential in sales recommendation.

• For example, we would like to predict how much someone is going to like a movie
based on its movie preferences:

movies

M =


2 3 1 ? ? 5 5
1 ? 4 2 ? ? ?
? 3 1 ? 2 2 2
? ? ? 3 ? 1 5
2 ? 4 ? ? 5 3

 users

• M is assumed to be of low rank, as only a few factors affect users’ preferences.

min
W∈Rm×n ��

���
���

�:‖W‖∗
rank(W) s.t. Wij = Mij, ∀(i, j) ∈ Ω
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• An alternative low-rank matrix completion formulation [Wen-Yin-Zhang]:

(4) min
X,Y,Z

1

2
‖XY − Z‖2F s.t. Zij = Mij, ∀(i, j) ∈ Ω

where X ∈ RM×L, Y ∈ RL×N , Z ∈ RM×N , and L is an estimate of min. rank.

• Advantage of adopting (4): When BCD is applied, each subproblem of (4) has
a closed-form solution:

Xr+1 = ZrYrT (YrYrT )†,

Yr+1 = (Xr+1TXr+1)†(Xr+1TZr),

[Zr+1]i,j =

{
[Xr+1Yr+1]i,j, for (i, j)��∈Ω

Mi,j, for (i, j) ∈ Ω
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Applications — Maximizing A Convex Quadratic Function

• Consider maximizing a convex quadratic problem:

(�) max
x

1

2
xTQx+ cTx s.t. x ∈ X

where X is a polyhedral set, and Q � 0.

• (�) is equivalent to the following problem1

(4) max
x1,x2

1

2
xT1 Qx2 +

1

2
cTx1 +

1

2
cTx2 s.t. (x1,x2) ∈ X × X

• When fixing either x1 or x2, problem (4) is an LP, thereby efficiently solvable.

1The equivalence is in the following sense: If x? is an optimal solution of (�), then (x?,x?) is optimal for (4);
Conversely, if (x?1,x

?
2) is an optimal solution of (4), then both x?1,x

?
2 are optimal for (�).
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Applications — Nonnegative Matrix Factorization (NMF)

• NMF is concerned with the following problem [Lee-Seung]:

min
U∈Rm×k,V∈Rk×n

‖M−UV‖2F s.t. U ≥ 0, V ≥ 0 (15)

where M ≥ 0.

• Usually k � min(m,n) or mk + nk � mn, so NMF can be seen as a linear
dimensionality reduction technique for nonnegative data.

…
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NMF Examples

• Image Processing:

– U ≥ 0 constraints the basis elements to be nonnegative.
– V ≥ 0 imposes an additive reconstruction.

© 1999 Macmillan Magazines Ltd

letters to nature

NATURE | VOL 401 | 21 OCTOBER 1999 | www.nature.com 789

PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ ^
n

i¼1
^

m

m¼1

½VimlogðWHÞim 2 ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

The basis elements extract facial features such as eyes, nose and lips.
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• Text MiningApplication 2: text mining

� Basis elements allow to recover the different topics;

� Weights allow to assign each text to its corresponding topics.

Dagstuhl Robust Near-Separable NMF Using LP 5

– Basis elements allow to recover different topics;
– Weights allow to assign each text to its corresponding topics.
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• Hyperspectral Unmixing

– Basis elements U represent different materials;
– Weights V allow to know which pixel contains which material.
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• Let’s turn back to the NMF problem:

min
U∈Rm×k,V∈Rk×n

‖M−UV‖2F s.t. U ≥ 0, V ≥ 0 (16)

• Without “≥ 0” constraints, the optimal U? and V? can be obtained by SVD.

• With “≥ 0” constraints, problem (16) is generally NP-hard.

• When fixing U (resp. V), problem (16) is convex w.r.t. V (resp. U).

• For example, for a given U, the ith column of V is updated by solving the
following NLS problem:

min
V(:,i)∈Rk

‖M(:, i)−UV(:, i)‖22, s.t. V(:, i) ≥ 0, (17)
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BCD Algorithm for NMF:

1: Initialize U = U0, V = V0 and r = 0;
2: repeat
3: solve the NLS problem

V? ∈ arg min
V∈Rk×n

‖M−UrV‖2F , s.t. V ≥ 0

4: Vr+1 = V?;
5: solve the NLS problem

U? ∈ arg min
U∈Rm×k

‖M−UVr+1‖2F , s.t. U ≥ 0

6: Ur+1 = U?;
7: r = r + 1;
8: until some convergence criterion is met
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BCD Convergence

• The idea of BCD is to divide and conquer. However, there is no free lunch; BCD
may get stuck or converge to some point of no interest.

Figure 6: BCD for smooth/non-smooth minimization.
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BCD Convergence

min
x

f(x) s.t. x ∈ X = X1 ×X2 × . . .×Xm ⊆ Rn (18)

• A well-known BCD convergence result due to Bertsekas:

Theorem 2. ([Bertsekas]) Suppose that f is continuously differentiable over the
convex closed set X . Furthermore, suppose that for each i

gi(ξ) , f(x1,x2, . . . ,xi−1, ξ,xi+1, . . . ,xm)

is strictly convex. Let {xr} be the sequence generated by BCD method. Then
every limit point of {xr} is a stationary point of problem (18).

• If X is (convex) compact, i.e., closed and bounded, then strict convexity of gi(ξ)
can be relaxed to having a unique optimal solution.
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• Application: Iterative water-filling for MIMO MAC sum capacity max.:

(4) max
{Qk}Kk=1

log det
(∑K

k=1 HkQkH
H
k + I

)
, s.t. Tr(Qk) ≤ Pk, Qk � 0, ∀k

• Iterative water-filling converges to a global optimal solution of (4), because

– BCD subproblem is strictly convex (assuming full column rankness of Hk);
– Xk is a convex closed subset;
– (4) is a convex problem, so stationary point =⇒ global optimal solution
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Generalization of Bertsekas’ Convergence Result

• Generalization 1: Relax Strict Convexity to Strict Quasiconvexity2 [Grippo-Sciandrone]

Theorem 3. Suppose that the function f is continuously differentiable and
strictly quasiconvex with respect to xi on X , for each i = 1, . . . ,m− 2 and that
the sequence {xr} generated by the BCD method has limit points. Then, every
limit point is a stationary point of problem (18).

• Application: Low-Rank Matrix Completion

(4) min
X,Y,Z

1

2
‖XY − Z‖2F s.t. Zij = Mij, ∀(i, j) ∈ Ω

– m = 3 and (4) is strictly convex w.r.t. Z =⇒ BCD converges to a stationary
point.

2f is strictly quasiconvex w.r.t. xi ∈ Xi on X if for every x ∈ X and yi ∈ Xi with yi 6= xi we have

f(x1, . . . , txi + (1− t)yi, . . . ,xm) < max {f(x), f(x1, . . . ,yi, . . . ,xm)} , ∀t ∈ (0, 1).
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• Generalization 2: Without Solution Uniqueness

Theorem 4. Suppose that f is pseudoconvex3 on X and that L0
X := {x ∈ X :

f(x) ≤ f(x0)} is compact. Then, the sequence generated by BCD method has
limit points and every limit point is a global minimizer of f .

• Application: Iterative water-filling for MIMO-MAC sum capacity max.

max
{Qk}Kk=1

log det
(∑K

k=1 HkQkH
H
k + I

)
s.t. Tr(Qk) ≤ Pk, Qk � 0, k = 1, . . . ,K

– f is convex, thus pseudoconvex;
– {Qk | Tr(Qk) ≤ Pk, Qk � 0} is compact;
– iterative water-filling converges to a globally optimal solution.

3f is pseudoconvex if for all x,y ∈ X such that ∇f(x)T (y − x) ≥ 0, we have f(y) ≥ f(x). Notice that
“convex ⊂ pseudoconvex ⊂ quasiconvex”.
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• Generalization 3: Without Solution Uniqueness, Pseudoconvexity and Compactness

Theorem 5. Suppose that f is continuously differentiable, and that X is convex
and closed. Moreover, if there are only two blocks, i.e., m = 2, then every limit
point generated by BCD is a stationary point of f .

• Application: NMF

min
U∈Rm×k,V∈Rk×n

‖M−UV‖2F s.t. U ≥ 0, V ≥ 0

• Alternating NLS converges to a stationary point of the NMF problem, since

– the objective is continuously differentiable;
– the feasible set is convex and closed;
– m = 2.
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Summary

• MM and BCD have great potential in handling nonconvex problems and realizing
fast/distributed implementations for large-scale convex problems;

• Many well-known algorithms can be interpreted as special cases of MM and BCD;

• Under some conditions, convergence to stationary point can be guaranteed by
MM and BCD.
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